32 research outputs found
ιι Έεζ°΄η΄ (Hydrogen peroxide)μ δΎν΄ θͺε°λλ κ΅°μ(Aplysia) ζθ¦Ίη₯ηΆη΄°θμ η΄°θζ»ζ» μ ιν η‘η©Ά
Thesis (master`s)--μμΈλνκ΅ λνμ :νλκ³Όμ μ μ 곡νμ 곡,2002.Maste
Engineering of 3D cellular microenvironment for reconstitution of blood/lymphatic vessel formation and function
νμλ
Όλ¬Έ (λ°μ¬)-- μμΈλνκ΅ λνμ : κΈ°κ³ν곡곡νλΆ, 2014. 2. μ λ리.μμ μ±μ₯κ³Ό μ μ΄, λΉλ¨ λ§λ§λ³μ¦, λ
ΈμΈμ± ν©λ°λ³μ± λ± 70μ¬μ’
μ΄μμ λ€μν μ§λ³μ νκ΄νΉμ λ¦Όνκ΄ μ λΉμ μμ μ±μ₯ λ° κΈ°λ₯μ μν΄ μ λ° νΉμ μ
νλλ€. λ°λΌμ νκ΄ λ° λ¦Όνκ΄μ νμ±κ³Ό κΈ°λ₯μ μ‘°μ ν¨μΌλ‘μ¨ μ΄λ¬ν μ§λ³μ 극볡νκ³ μ νλ λ
Έλ ₯μ΄ μμ½νλΆμΌ μ λ°μ κ±Έμ³ νλ°ν μ΄λ£¨μ΄μ§κ³ μλ€. νκ΄μ νμ±κ³Ό κΈ°λ₯μ κ΄λ ¨λ κΈ°μ΄ μν μ°κ΅¬μ μ μ½μ ν¨κ³Ό νκ°μλ νμ°μ μΌλ‘ μΈν¬λ°°μμ ν΅ν μ²΄μΈ λͺ¨λΈμ νμλ‘ νλ€. λ΄νΌμΈν¬μ λ―ΈμΈνκ²½μ 3μ°¨μ μΈν¬μΈκΈ°μ§(extracellular matrix), λ€μν μΈν¬κ΅° μ¬μ΄μ μνΈμμ©, νλ₯ λ° νμ₯μ μ λμ μν μ물리μ μκ·Ή λ± λ³΅ν©μ μΈ μΈμλ€μ κ²°ν©μΌλ‘ μ΄λ£¨μ΄μ Έ μλ€. μ΄λ¬ν μΈμλ€μ νκ΄μ νμ± κ³Όμ μμ 볡ν©μ μΈ μν₯μ λ―ΈμΉ λΏ μλλΌ νμ±λ νκ΄μ κΈ°λ₯κ³Ό νμμ± μ μ§μ μμ΄μλ μ€μν μν μ μννλ€. κΈ°μ‘΄μ νκ΄λͺ¨λΈμμλ μ΄λ¬ν μΈμλ€μ΄ λΆλΆμ μΌλ‘ κ²°μ¬λμ΄ μκ±°λ μ λ° μ μ΄λμ§ λͺ»νλ μ·¨μ½μ μ μ§λ
, μ΄λ₯Ό ν΅ν΄ κ΄μ°°λ μΈν¬λ°μμ΄ μ체νμμ μ΄ν΄νλλ° μ νμ μΈ μ 보λ§μ μ 곡νλ€λ νκ³λ₯Ό κ°μ§λ€. λ³Έ μ°κ΅¬μμ μ μνλ λ―ΈμΈμμ(microdevice)λ νκ΄μ νμ±κ³Ό κΈ°λ₯μ κ΄λ ¨λ μ£Όμ μΈμλ€, λ€μν μΈν¬κ΅° μ¬μ΄μ μνΈ μ νΈμ λ¬, μΈν¬-μΈν¬μΈκΈ°μ§ μνΈμμ©, κ·Έλ¦¬κ³ νκ΄ κ³ μ μ μνν, μ물리μ μ νΈλΆμλ₯Ό 3μ°¨μ λ°°μνκ²½μμ κ²°ν©νμ¬ μ²΄λ΄μμ κ΄μ°°λλ νκ΄ νμ±μ λ¨κ³μ μΈ κ³Όμ μ λμ μ μ¬μ±μ ν΅ν΄ ꡬννμλ€. νΉν νκ΄λ΄νΌμΈν¬μ μ¬μ μμΈν¬μ 곡κ°μ μΈ λ°°μΉμ λ°°μννλ₯Ό μ μ΄ν¨μΌλ‘μ¨ λ°°μμ λ°μ λ¨κ³μμ κ΄μ°°λλ νκ΄νμ± κ³Όμ (vasculogenesis)μ κΈ°μ‘΄ νκ΄μμ μνκ΄μ΄ μ±μ₯νλ κ³Όμ (angiogenesis)μ΄ μ λ° λͺ¨μ¬νμλ€. λν μ΄λ¬ν κ³Όμ μ ν΅ν΄ νμ±λλ νκ΄λ§μ μ±μ₯μ μ΅μ’
λ¨κ³μμ μλ°μ μΌλ‘ νκ΄ λ΄λΆλ‘μ μ κ·Όμ κ°λ₯ν λ‘ νλ μ
, μΆκ΅¬λ₯Ό νμ±νλλ‘ μ λλ¨μΌλ‘μ¨ 3μ°¨μ μ²΄μΈ νκ΄μμλ νλ₯ μ λμ λͺ¨μ¬ν μ μλ μ€νμ κΈ°λ²μ μ 곡, κΈ°μ‘΄ κΈ°μ μ νκ³μ μ 극볡νμλ€. μ΄ λ°©λ²μ 3μ°¨μ μΈν¬λ°°μ, μ리μ μΈ νκ΄μ μ±μ₯, νκ΄ νΉμ΄μ μΈ λ―ΈμΈ νκ²½μ μ λ° λͺ¨μ¬, νλ₯ μ λμ ν΅ν νκ΄ κΈ°λ₯μ λ°νμ΄λΌλ κΈ°μ μ κ³Όμ λ€μ νλμ λͺ¨λΈμμ ν΅ν©μ μΌλ‘ ꡬμΆν¨μΌλ‘μ¨ κΈ°μ‘΄μ λ°©μμ λΉν΄ λμ μ체 μ μ¬μ±κ³Ό μ λ’°μ±μ μ§λ νκ΄ λͺ¨λΈμ μ μνμλ€.
λν νκ΄μ μ μκ³Ό ννμ μΌλ‘ μ μ¬ν μ±μ₯ κ³Όμ μ 보μ¬μ£Όλ λ¦Όνκ΄ μ μμ μ°κ΅¬λ₯Ό ν΅ν΄ κ°λ°λ λͺ¨λΈ μμ€ν
μ νμ© λ²μλ₯Ό νλνμλ€. λ¦Όνκ΄μ μ μμ μμ μ μ΄ κ³Όμ μμ κ΄μ°°λλ μ£Όμ μΈν¬κ±°λμ΄λ©° μΌμ¦λ°μμ΄λ μκ°λ©΄μμ§ν λ± λ€μν λ³λ¦¬μ νμμμ μ£Όμν λ¨κ³μ ν΄λΉνλ€. λ³Έ μ°κ΅¬μμ κ°λ°λ νλ«νΌμ μ±μ₯μΈμμ μ‘°μ§μ‘μ νλ¦(interstitial flow)μ΄λΌλ λ κ°μ§ μ£Όμ μκ·Ήμ κ²°ν©μ μΌλ‘ μΈν¬μ μ λ¬ν¨μΌλ‘μ¨ κΈ°μ‘΄μ λͺ¨λΈμ λΉν΄ λμ μ체 μ μ¬μ±μ κ°λ₯μΌ νμλ€. λ―ΈμΈμ 체μμ λ΄μμ λ°°μλ λ¦Όνκ΄ λ΄νΌμΈν¬λ νκ΄μ±μ₯μΈμ(vascular endothelial growth factor, VEGF), μ¬μ μμΈν¬ μ±μ₯μΈμ (basic fibroblast growth factor, bFGF), μ€νκ³ μ 1-μΈμ° (sphingosing 1-phosphate) λ±μ λ€μν μνν λΆμλ€μ λλꡬ배μ λ°μνμ¬ λ¦Όνκ΄μ νμ±νμλ€. νμ§λ§ μ¬κΈ°μ μ 체μ μ λμ μν κΈ°κ³μ μΈ μκ·Ήμ λμμ μΈκ°νμ λ λ¦Όνκ΄μ μ±μ₯μ ν΅κ³μ μΌλ‘ μ μλ―Έν ν₯μμ΄ κ΄μ°°λμμΌλ©°, μ 체 μ λμ μλμ κ·Έ λ°©ν₯μλ λ―Όκ°ν μΈν¬κ±°λμ μ°¨μ΄λ₯Ό λνλλ€. κ°μ₯ λμ λ¦Όνκ΄μ μ±μ₯μ΄ κ΄μ°°λ 쑰건μ μ±μ₯μΈμμ κ³Όλ°νκ³Ό λμ λ¦Όνμ‘ μ λλμ΄λΌλ μ μ£Όλ³ λ―ΈμΈνκ²½μ μ νμ μΈ νΉμ§κ³Ό μΌμΉνλ κ²μΌλ‘ λνλ¬λ€. νΉν μ΄λ¬ν 쑰건μμ νμ±λ λ¦Όνκ΄μ, μ체 λ΄μμ κ΄μ°°λλ λ¦Όνκ΄κ³Ό μ‘°μ§νμ νμ§, νννμ νΉμ§ λ± λ€μν λ©΄μμ μ μ¬μ±μ 보μλ€. λν μ€νμ μΌλ‘ κ°νΈνλ©΄μλ λμ μ체 μ μ¬μ±μ 보μ΄λ λͺ¨λΈμ ν΅ν΄ λ€μν μ½λ¬Όμ λ°λ₯Έ λ¦Όνκ΄ νμ± μμμ κ΄μ°°νκ³ μ΄λ₯Ό μ λν ν¨μΌλ‘μ¨ λ³Έ μ°κ΅¬μμ κ°λ°ν λͺ¨λΈμ΄ μ μ½μ κ°λ°κ³Όμ μμλ μ μ©ν νΉμ±μ μ§λμ μ
μ¦νμλ€.
λ³Έ μ°κ΅¬λ 3μ°¨μ μΈν¬λ°°μ, μ리μ μΈ νκ΄κ³Ό λ¦Όνκ΄μ μ±μ₯, νκ΄μ νΉμ΄μ μΈ λ―ΈμΈ νκ²½μ μ λ° λͺ¨μ¬, νλ₯ μ λμ ν΅ν νκ΄ κΈ°λ₯μ λ°νμ΄λΌλ κΈ°μ μ κ³Όμ λ€μ νλμ λͺ¨λΈμμ ν΅ν©μ μΌλ‘ ꡬμΆν¨μΌλ‘μ¨ κΈ°μ‘΄μ λ°©μμ λΉν΄ λμ μ체 μ μ¬μ±κ³Ό μ λ’°μ±μ μ§λ μ²΄μΈ λͺ¨λΈμ μ 곡νμλ€. μ΄λ¬ν λ―ΈμΈμμλ μ€νμ ν¨μ¨μ±, μ¬νμ±, μ λ’°μ± μΈ‘λ©΄μμ μ₯μ μ μ§λ
λ―ΈμΈμμμ λ³λ ¬νλ₯Ό ν΅ν μ μ½κ°λ°, μμ½νκ³Ό μΈν¬μλ¬Όν λΆμΌμ κΈ°μ΄μ°κ΅¬λ₯Ό λμμΌλ‘ ν νλμ νμ©μ΄ κΈ°λλλ€.Numerous pathologies including tumor metastasis, diabetic retinopathy, age-related macular degeneration and edema are induced or exacerbated by malfunction and aberrant growth of blood or lymphatic vessels. Therefore, attempts in medical and pharmacological researches have been made to treat these disorders by modulating formation and function of blood and lymphatic vessels, which necessarily requires cell-culture-based in vitro models. The microenvironments of endothelial cells are constructed by integration of key constituents such as multiple cell types in close interactions, 3-dimensional extracellular matrix (ECM), biochemical cues and flow-induced mechanical stresses. These factors not only modulate formation of blood/lymphatic vessels, but also influence characteristic functions and homeostasis. However, current in vitro models of blood/lymphatic vessels usually do not integrate these key elements in a single platform or lack precise spatiotemporal control over relevant parameters, thus cellular behaviors observed in these systems only provide limited information and predictions of in vivo phenomena.
In this thesis, we present a novel in vitro model which provides close reconstitution of complex cellular dynamics observed during processes of in vivo angiogenesis and lymphangiogenesis by integrating important elements of endothelial microenvironments including endothelial-stromal cell interactions, cell-ECM interactions, biochemical and mechanical stimulants in controlled 3D cell culture environments. For development of blood vessel and angiogenesis model, we used surface-tension-assisted cell and ECM patterning technique to precisely control relative location and distribution of endothelial and fibroblast cell types so that paracrine interactions between these two cells types induce endothelial cells to undergo natural programs of vessel morphogenesis, vasculogenesis and angiogenesis in our chip. One of major attributes of our model is that endothelial cells forming vascular networks spontaneously established perfusable accesses into the lumens allowing introduction of fluid flow through the vasculatures, which overcomes the technical hurdle that suffered by conventional models of blood vessel usually lacking either one of two essential factors, cell-autonomously established 3D vasculatures and flow-induced mechanical shear stress. The resulting vascular networks exhibited close resemblance of in vivo capillary networks in biochemical marker expression and structural aspects, as well as fluid-flow induced endothelial specific morphologies and characteristic functions.
Next, we demonstrated that the developed system can provide novel experimental opportunities in the investigation of lymphangiogenesis, new lymphatic vessel formation via sprouting morphogenesis from pre-existing lymphatics. Of particular note, this model is optimally suited for co-stimulation of biochemical and mechanical stimuli, both of which are proven to be important for lymphatic morphogenesis in our chip. While static condition, where lymphatic endothelial cells are exposed to increasing concentration gradients of pro-lymphangiogenic factors, induced lymphatic sprouts in 3D fibrin matrix, combination of these factors and interstitial flow with direction reminiscent of lymph flow, significantly promoted lymphatic sprouting with direction against the fluid flow. Not only presence of interstitial flow, but also magnitudes and directions of interstitial flow resulted in sensitive responses of LECs toward these mechanical stimuli. The condition most actively promoted lymphatic sprouting corresponds to the tumor microenvironments where characterized by overexpression of plethora of cytokines and growth factors and elevated lymph flow, explaining how these altered microenvironments exacerbate peritumor lymphangiogenesis and metastatic dissemination of tumor cells through lymph nodes. Furthermore, the lymphatic sprouts grown in our model displayed similar characteristics with in vivo lymphatic capillaries in biochemical and morphological features. We also demonstrated the potential utility of our model in testing pharmacological modulators of lymphangiogenesis with quantitative evaluations and phenotypic changes with enhanced predictive potential.
The microscale system presented in this thesis provides a novel in vitro model of blood/lymphatic formation and function with improved physiological relevance and reliability, and expected to have wide range of applications across pharmaceutical and biomedical researches.Abstract -------------------------------------------------------------------------------------------- i
Contents ------------------------------------------------------------------------------------------- iv
List of Tables ----------------------------------------------------------------------------------- viii
List of Tables ------------------------------------------------------------------------------------- ix
Chapter
1 Introduction ------------------------------------------------------------------------ 1
2 Engineering of functional, perfusable 3D microvascular networks through reconstitution of vasculogenesis and angiogenesis on a chip -- 6
2.1 Introduction ------------------------------------------------------------------- 6
2.2 Materials and methods ------------------------------------------------------ 8
2.2.1 Device fabrication --------------------------------------------- 8
2.2.2 Cell culture ------------------------------------------------------- 9
2.2.3 Vasculogenesis cell seeding ---------------------------------- 10
2.2.4 Angiogenesis cell seeding ------------------------------------- 10
2.2.5 Measuring the success rate of vessel perfusion --------- 11
2.2.6 Immunostaining ----------------------------------------------- 12
2.2.7 Imaging ---------------------------------------------------------- 13
2.2.8 Measurement of vessel permeability ---------------------- 13
2.2.9 Inflammatory response and HL-60 adhesion experiments ---------------------------------------------------- 14
2.2.10 Fluid perfusion experiments and statistical analysis of endothelial NO synthesis ------------------------------------ 15
2.2.11 Quantification of vessel area and length of sprouts ---- 17
2.3 Results ------------------------------------------------------------------------- 18
2.3.1 Microfluidic chip and experimental design -------------- 18
2.3.2 Formation of vasculogenesis- and angiogenesis-derived microvascular networks ------------------------------------- 19
2.3.3 Morphological and biochemical characterization of the vessels ----------------------------------------------------------- 21
2.3.4 Perfusable and intact lumina of the engineered microvascular networks ------------------------------------- 22
2.3.5 Flow-induced endothelial responses ---------------------- 24
2.3.6 In vitro modeling of endothelial interactions with pericytes, cancer cells and leukocytes -------------------- 26
2.4 Discussion --------------------------------------------------------------------- 28
2.5 Conclusions ------------------------------------------------------------------- 30
3 Reconstitution of sprouting morphognesis of lymphatics under combined stimulation of pro-lymphangiogenic factors and interstitial flow --------------------------------------------------------------------------------- 52
3.1 Introduction ------------------------------------------------------------------ 52
3.2 Materials and methods ----------------------------------------------------- 55
3.2.1 Device fabrication--------------------------------------------- 55
3.2.2 Cell culture and seeding in microfluidic devices ------- 55
3.2.3 Immunostaining and confocal imaging ------------------ 58
3.2.4 Quantitative validation of interstitial flow across 3D ECM ------------------------------------------------------------- 58
3.2.5 Treatment of anti-lymphangiogenic factors ------------- 59
3.2.6 Quantification and statistical analysis ------------------- 60
3.3 Results ------------------------------------------------------------------------- 60
3.3.1 Microfluidic platform for lymphatic sprouting under stimulation of pro-lymphangiogenic factors and interstitial flow ------------------------------------------------ 60
3.3.2 Sprouting of lymphatic endothelial cells in response to gradients of pro-lymphangiogenic factor ---------------- 61
3.3.3 Presence, direction and magnitude of interstitial flow determin activity of lymphatic sprouting ---------------- 62
3.3.4 Interstitial flow regulates lymphatic capillary network formation and directional expansion --------------------- 64
3.3.5 Interstitial flow drives directional sprouting growth and filopodia formation ------------------------------------------- 66
3.3.6 Lymphatic sprouts exhibit structural and biochemical characteristics of in vivo lymphangiogenesis ------------ 67
3.3.7 Modulation of lymphangiogenesis by small molecule inhibitors and inflammatory cytokine -------------------- 68
3.4 Discussion --------------------------------------------------------------------- 70
4 Conclusions ------------------------------------------------------------------------ 92
References ----------------------------------------------------------------------------------- 94
Abstract (in Korean) --------------------------------------------------------------------- 107Docto
Noddingsμ λ°°λ €λ₯Ό μν νκ΅κ΅μ‘λ‘
μλ³Έ λ
Όλ¬Έμ μμ±νλ±μ μ€ννλ €λ μ¬μ±μ μκ°μΈ λ°°λ €μ€λ¦¬μ κ΄μ μμ κ΅μ‘κ³Όμ β€νκ΅μ‘°μ§β€κ΅μ‘νκ° μμμ ν¬ν¨ν νκ΅κ΅μ‘μ λ°μ λν΄ μ€μ μ μΈ λ¬Έμ λ€κ³Ό κ΄λ ¨μ§μ΄ κ²ν β€λ
Όμνλ€. μ΄λ¬ν λ°°λ €κ΄μ μ 곧 Noddingsμ κ΅μ‘μ μκ°μ΄λ€. λ°°λ €κ΄μ μ νΌλ°°λ €μμ μ±μ₯μ μ΅μ°μ μμλ₯Ό λκ³ , ꡬ체μ μν©μ κ°μν΄μ κ΅μ‘λ¬Έμ λ€μ νλ €κ³ νλ κ΅μ‘μ μ
μ₯μ΄λΌλ μ μμ κ·Έ μλ―Έκ° μλ€. μ΄ λ
Όλ¬Έμμ κ³ μ°°νμ¬ λ°ν λ΄μ©μ λ€μκ³Ό κ°λ€. 첫째, λ°°λ €μ€λ¦¬μ λ°λ₯Έ μ¬μ±μ κ°μΉλ₯Ό μ€ννλ μΌμ μ΅μν νκ΅κ΅¬μ±μμ μΈκ°κ΄κ³λ₯Ό κ°μ ν μ μκ³ , λ°°λ €μ μ€μ²μ μ λ‘μ¬ κ²μμ΄ μλκΈ° λλ¬Έμ λ€λ₯Έ κ΅μ‘μ κΈ°λ₯μ μΆμμν€μ§ μλλ€λ κ²μ΄λ€. λμ§Έ, λ°°λ €κ΄μ μ΄ λΉκ³΅λ체μ μΈ μ€λ¦¬λΌλ λΉνμ 극볡νκΈ° μν΄μ κ°μΈμ κ΄μ¬λΏλ§ μλλΌ κ³΅μ μ΄μ΅λ κ³ λ €ν νμκ° μλ€λ μ μ΄λ€. μ
μ§Έ, λ°°λ €κ΄μ μ κ΅μ‘νμμ μ΄λΆλ²μ μΌλ‘ νμ
νμ§ μμΌλ©°, λΆνλ±, μ΅μ, κ°μ , νμΌνλ₯Ό μΌμΌν¬ μ μλ κ΅μ‘μ λ°λνλ€λ κ²μ΄λ€. λ·μ§Έ, λ°°λ €κ΄μ μ λ€λ₯Έ νλ―Έλμ¦λ³΄λ€ μ§λ°°β€μ΅μμ λμ²νλ λ°©λ²μ΄ κΈμ§μ μ΄μ§ μκ³ μ€λμ μ΄λ©°, κ΅μ‘μ€μ λ₯Ό λ―Έμμ κ΄μ μμ μ΄ν΄νμ§ μκ³ κ±°μμ μΌλ‘ νμ
νκ³ , Deweyλ λ¬Όλ‘ Hutchins, Adlerμ 견ν΄κΉμ§λ μ μΆ©β€μ’
ν©νλ μΈ‘λ©΄μ΄ μλ€λ μ μ΄λ€. λ€μ―μ§Έ, λ°°λ €κ΄μ μ΄ ν¬μ€νΈλͺ¨λνλ κ΅μ‘νμ€μμμ λΆκΆν, μνν, μμ€ν
ν, μ¬κ΅¬μ‘°ν, κ΄κ³νλ₯Ό κ³μμ μΌλ‘ μ§ν₯νλ€λ μ¬μ€μ΄λ€. κ²°λ‘ μ μΌλ‘ κ΅μ‘μ μ μ©ν¨μ μμ΄μ λ°°λ €μ€λ¦¬μ μ¬μ±μ μ κ·Όμ μ μμ€λ¦¬μ λ¨μ±μ μ κ·Όμ 보μνλ νλμ λμμΌ κ²μ΄λ€.
Caring as a rational moral orientation and maternal thinking is richly applicable to teaching. For instance confirmation is to reveal to the cared-for an attainable image of himself that is lovelier than that manifested in his present acts. A high expectation can be a mark of respect, but so can a relatively low one. One acting from a perspective of caring moves consciously in the other direction; that is, calls on a sense of obligation in order to stimulate natural caring and on a sense of duty or special obligation only when love or inclination fails. Small schools can help the pupils to get the serenity. Noddings believe that the chief obstacle to making schools smaller is simply a failure to set proper priorities in schooling. To take on a group of students when they enter high school and guide them through their entire high school mathematics curriculum can develop the relation of teacher and students that makes confirmation possible and may realize academic and professional benefits. The teacher may come to understand the whole math curriculum. Noddings suggested that students and teachers stay together by mutual consent and with the approval of parents. Noddings rejects the tests that is predictable winners and losers because someone has to be below average. Therefore I think in schools learning outcomes must be assessed by what each child learn rather than what all the children learn. Schools must pay attention to the moral and social growth of their citizens. We explore seriously an ethic of caring for education and suggest changes in every of schooling