170 research outputs found

    ๊ฐ๋งˆ์„  ์ฒ˜๋ฆฌ์— ์˜ํ•ด ์œ ๋„๋œ ์‹ฌ๋น„๋””์›€ ๋Œ์—ฐ๋ณ€์ด์ฒด์˜ ๋Œ์—ฐ๋ณ€์ด ๋ฐœ์ƒ๋นˆ๋„ ๋ฐ ์•ˆ์ •์„ฑ, ๊ธฐ์ž‘, ์œ ๋„ํšจ์œจ ์ฆ์ง„ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๋†์—…์ƒ๋ช…๊ณผํ•™๋Œ€ํ•™ ์‹๋ฌผ์ƒ์‚ฐ๊ณผํ•™๋ถ€(์›์˜ˆ๊ณผํ•™์ „๊ณต),2020. 2. ๊ฐ•๋ณ‘์ฒ .Mutation breeding techniques using physical mutagens (e.g., ฮณ-rays, X-rays, and ion beams) have been widely used to develop mutant cultivars in diverse plant species. In 226 plant species, 3,308 mutants developed with physical mutagens have been registered in the Mutant Variety Database of the joint Food and Agriculture Organization of the United Nations/International Atomic Energy Agency. Especially, this technique is a useful method to improve one or two characteristics of elite cultivars. In seed propagated crops, the broad studies on mutation induction, optimal radiation dose, mutation efficiency, and so on have been conducted. However, in the vegetatively propagated plant species except chrysanthemum the studies have been performed restrictively and especially on Cymbidium. In this study, I focused on the analysis of optimal ฮณ-irradiation condition, mutation frequency, stability of chimeras, mutation mechanism, and induction efficiency of mutation in Cymbidium. To analyze the effects of the total dose and irradiation duration on the growth of Cymbidium hybrid, samples were irradiated with seven total doses of ฮณ-rays (0, 20, 40, 60, 80, 100, and 120 Gy) and five irradiation durations (1, 4, 8, 16, and 24 h). Survival and multiplication rates were measured at 3 and 6 months after irradiation (MAI), whereas the regeneration rate was analyzed at 9 MAI. The optimal doses (LD50) for each irradiation duration were estimated: 1 h, 16.1 Gy; 4 h, 23.6 Gy; 8 h, 37.9 Gy; 16 h, 37.9 Gy; and 24 h, 40.0 Gy. The estimated optimal doses were duration-dependent at irradiation durations shorter than 8 h, but not at irradiation durations exceeding 8 h. Using the results of the first experiment as a reference, mutant populations were constructed using diverse ฮณ-irradiation conditions as follows: RB003, irradiation conditions of 50 Gy/ 24 h, 50 Gy/ 16 h, 50 Gy/ 8 h, 35 Gy/ 4 h, and 25 Gy/ 1 h; RB012, irradiation conditions of 40 Gy/ 24 h, 40 Gy/ 16 h, 40 Gy/ 8 h, 30 Gy/ 4 h, 20 Gy/ 1 h, 30 Gy/ 24 h, and 30-30 Gy/ 24 h [re-irradiation of the population treated with 30 Gy/ 24 h]. In the RB003 and RB012 populations, the highest mutation frequency was identified as 4.06% (irradiation condition of 35 Gy/ 4 h) and 1.51% (20 Gy/ 1 h), respectively. Compared with the RB012 population ฮณ-irradiated with 30 Gy/ 24 h, there was no difference on the mutation frequency of the re-irradiated (30-30 Gy/ 24 h) population: 30 Gy/ 24 h, mutation frequency of 0.68%; 30-30 Gy/ 24 h, 0.67%. These results indicate the mutations induced by a short-term treatment may be similar to those induced by a treatment over a longer period. Additionally, leaf-color mutants was identified as relatively stable chimera types, but leaf-shape mutants was unstable and the stability of chimeras was different depending on the type and the location of a mutation on the cell layers. A mutant displaying light-green leaves, obtained by ฮณ-ray-based mutagenesis of a Cymbidium, was subjected to RNA sequencing (RNA-seq) to identify genes associated with leaf color. A total of 144,918 unigenes obtained from more than 25 million generated reads were assigned to 22 metabolic pathways in the Kyoto Encyclopedia of Genes and Genomes database. In addition, Gene Ontology was used to classify the predicted functions of unigenes into 73 functional groups. The RNA-seq analysis identified 2,267 genes differentially expressed between wild-type and mutant Cymbidium. Genes involved in chlorophyll biosynthesis and degradation as well as metal ion transport were identified and further evaluated by quantitative real-time PCR. No change was detected in genes involved in chlorophyll biosynthesis. In contrast, seven genes involved in ion transport were down-regulated, and chlorophyllase 2, associated with chlorophyll degradation, was up-regulated. Taken together, our results suggest that alteration in chlorophyll metabolism and/or ion transport regulate leaf color in Cymbidium. This study was approached from the theoretical background that de-condensed chromatins are readily affected by radiation. I selected leaf color of Cymbidium as target traits for trait-targeted mutagenesis, and focused on genes encoding proteins in chlorophyll biosynthetic pathways. Light modulation was used to control the expression of genes related to chlorophyll biosynthesis in Cymbidium. ฮณ-irradiation was conducted when genes encoding proteins of chlorophyll pathways were highly expressed. Light modulation followed by ฮณ-ray treatment resulted in a 1.4~2.0-fold increase in the mutation frequency of leaf-color compared with ฮณ-ray treatment alone without light modulation in Cymbidium. These results indicate that the highly expressed condition of genes associated with specific trait is readily affected by radiation, resulting in an increased frequency of mutation related to the target trait. The information presented herein regarding optimal ฮณ-irradiation condition, mutation frequency, stability of chimeras, mutation mechanism, and induction efficiency of mutation will be useful for the mutation breeding of Cymbidium.๋ฌผ๋ฆฌ์  ๋Œ์—ฐ๋ณ€์ด์›(๊ฐ๋งˆ์„ , X-์„ , ์ด์˜จ๋น” ๋“ฑ)์„ ์ด์šฉํ•œ ๋ฐฉ์‚ฌ์„  ๋Œ์—ฐ๋ณ€์ด ์œก์ข…๋ฒ•์€ ๋‹ค์–‘ํ•œ ์‹๋ฌผ์— ํ™œ์šฉ๋˜์–ด ํ˜„์žฌ๊นŒ์ง€ ๊ณต์‹์ ์œผ๋กœ 3,000์ข… ์ด์ƒ์ด ๊ฐœ๋ฐœ๋˜์—ˆ๋‹ค. ํŠนํžˆ, ์šฐ์ˆ˜ ํ’ˆ์ข…์˜ 1~2๊ฐœ ํ˜•์งˆ์„ ๊ฐœ๋Ÿ‰ํ•˜๋Š”๋ฐ ์œ ์šฉํ•˜๊ฒŒ ํ™œ์šฉ๋˜๊ณ  ์žˆ์œผ๋ฉฐ, ์ข…์ž๋ฒˆ์‹ ์ž‘๋ฌผ์„ ์ค‘์‹ฌ์œผ๋กœ ๋Œ์—ฐ๋ณ€์ด์˜ ์œ ๊ธฐ ๊ธฐ์ž‘, ์ ์ • ๋ฐฉ์‚ฌ์„  ์ฒ˜๋ฆฌ์กฐ๊ฑด, ๋Œ์—ฐ๋ณ€์ด ๋ฐœ์ƒ๋นˆ๋„ ๋“ฑ์— ๋Œ€ํ•ด ํ™œ๋ฐœํ•œ ์—ฐ๊ตฌ๊ฐ€ ์ง„ํ–‰๋˜์—ˆ๋‹ค. ๋ฐ˜๋ฉด, ์˜์–‘๋ฒˆ์‹ ์ž‘๋ฌผ์˜ ๊ฒฝ์šฐ ๊ตญํ™”๋ฅผ ์ œ์™ธํ•˜๊ณ ๋Š” ๊ด€๋ จ ์—ฐ๊ตฌ๊ฐ€ ์ œํ•œ์ ์œผ๋กœ ์ง„ํ–‰๋˜์—ˆ์œผ๋ฉฐ, ํŠนํžˆ ํ•œ๊ตญ, ์ค‘๊ตญ, ์ผ๋ณธ์˜ ํ™”ํ›ผ์‚ฐ์—…์—์„œ ์ค‘์š”ํ•œ ํ™”ํ›ผ์ž‘๋ฌผ์— ์†ํ•˜๋Š” ๋‚œ์˜ ๊ฒฝ์šฐ ๋ณด๊ณ ๋œ ์—ฐ๊ตฌ๊ฐ€ ๊ฑฐ์˜ ์—†๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์‹ฌ๋น„๋””์›€์„ ๋Œ€์ƒ์œผ๋กœ ์ ์ • ๋ฐฉ์‚ฌ์„  ์ฒ˜๋ฆฌ์กฐ๊ฑด, ๋Œ์—ฐ๋ณ€์ด ๋ฐœ์ƒ๋นˆ๋„, ๋Œ์—ฐ๋ณ€์ด์ฒด์˜ ํ‚ค๋ฉ”๋ผ ์•ˆ์ •์„ฑ, ๋ณ€์ด ๊ธฐ์ž‘, ๋Œ์—ฐ๋ณ€์ด ์œ ๊ธฐํšจ์œจ ์ฆ์ง„์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋ฅผ ๋ชฉ์ ์œผ๋กœ ํ•œ๋‹ค. ์‹ฌ๋น„๋””์›€์˜ ์ ์ • ๊ฐ๋งˆ์„  ์ฒ˜๋ฆฌ์กฐ๊ฑด ๋ถ„์„์€ ๋‹ค์–‘ํ•œ ์กฐ์‚ฌ์‹œ๊ฐ„(1, 4, 8, 16, 24์‹œ๊ฐ„) ๋ฐ ์กฐ์‚ฌ์„ ๋Ÿ‰(0, 20, 40, 60, 80, 120Gy)๋กœ ์ฒ˜๋ฆฌํ•œ ํ›„ 3, 6, 9๊ฐœ์›”์— ์ƒ์กด์œจ, ์ฆ์‹๋ฅ , ์žฌ๋ถ„ํ™”์œจ์„ ๋น„๊ตํ•œ ๊ฒฐ๊ณผ ์กฐ์‚ฌ์‹œ๊ฐ„ 1-8์‹œ๊ฐ„๊นŒ์ง€๋Š” RD50 ๋ฐ LD50์ด ์กฐ์‚ฌ์‹œ๊ฐ„์— ๋น„๋ก€์ ์œผ๋กœ ์ฆ๊ฐ€ํ•˜์˜€์œผ๋‚˜, 8-24์‹œ๊ฐ„์—์„œ๋Š” ์ฐจ์ด๊ฐ€ ์—†๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. 1์ฐจ ๋„์ถœ๊ฒฐ๊ณผ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๋‹ค์–‘ํ•œ ๊ฐ๋งˆ์„  ์ฒ˜๋ฆฌ์ง‘๋‹จ์„ ๊ตฌ์ถ•ํ•˜๊ณ  ๋Œ์—ฐ๋ณ€์ด ๋ฐœ์ƒ๋นˆ๋„๋ฅผ ๋ถ„์„ํ•œ ๊ฒฐ๊ณผ ํŠน์ • ์กฐ์‚ฌ์กฐ๊ฑด(RB003: 35Gy/4h, ๋ณ€์ด๋นˆ๋„ 4.06%; RB012: 20Gy/1h, ๋ณ€์ด๋นˆ๋„ 1.51%)์—์„œ ๋†’์€ ๋ณ€์ด๋นˆ๋„ ๋ฐ ์ŠคํŽ™ํŠธ๋Ÿผ์„ ๋ณด์ด๋Š” ๊ฒƒ์œผ๋กœ ํ™•์ธ๋˜์—ˆ๋‹ค. ๋ฐ˜๋ฉด, ๊ฐ๋งˆ์„  ์žฌ์กฐ์‚ฌ์—์„œ๋Š” ๋Œ์—ฐ๋ณ€์ด ๋ฐœ์ƒ๋นˆ๋„์— ์ฐจ์ด๊ฐ€ ์—†์—ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๋Š” ์ƒ๋Œ€์ ์œผ๋กœ ์งง์€ 4์‹œ๊ฐ„ ์ดํ•˜์˜ ๊ฐ๋งˆ์„  ์กฐ์‚ฌ๋ฅผ ํ†ตํ•ด์„œ ๋‹ค์ˆ˜์˜ ๋ณ€์ด์ฒด๋ฅผ ์œ ๊ธฐํ•  ์ˆ˜ ์žˆ์Œ์„ ์˜๋ฏธํ•œ๋‹ค. ๋˜ํ•œ ๋ณ€์ด์ฒด์˜ ํ‚ค๋ฉ”๋ผ ์•ˆ์ •์„ฑ์„ ๋ถ„์„ํ•œ ๊ฒฐ๊ณผ ์ถ”์ •๋˜๋Š” ํ‚ค๋ฉ”๋ผ์˜ ๋ฐœ์ƒ ํ˜•ํƒœ์— ๋”ฐ๋ผ ์•ˆ์ •์„ฑ์— ์ฐจ์ด๊ฐ€ ์žˆ์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๊ฐ๋งˆ์„ ์— ์˜ํ•œ ์‹ฌ๋น„๋””์›€ ์—ฝ์ƒ‰๋ณ€์ด์ฒด(RB003-S12, ์—ฝ๋ก์†Œ ๊ฐ์†Œ ๋Œ์—ฐ๋ณ€์ด์ฒด)์˜ ๋ณ€์ด ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ๋ถ„์„ํ•˜๊ธฐ ์œ„ํ•ด ๋Œ€์กฐ๊ตฌ์™€ ๋Œ์—ฐ๋ณ€์ด์ฒด์˜ RNA๋ฅผ ์ถ”์ถœํ•˜์—ฌ ์—ผ๊ธฐ์„œ์—ด์„ ๋ถ„์„ํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ ๋Œ€์กฐ๊ตฌ์™€ ๋Œ์—ฐ๋ณ€์ด์ฒด ๊ฐ„์˜ ์œ ์ „์ž ๋ฐœํ˜„ ์ฐจ์ด๋ฅผ ๋ณด์ด๋Š” 2,267๊ฐœ(724๊ฐœ ์ฆ๊ฐ€, 529๊ฐœ ๊ฐ์†Œ)์˜ ์œ ์ „์ž๋ฅผ ๋„์ถœํ•˜์˜€์œผ๋ฉฐ, ์—ฝ๋ก์†Œ ํ•ฉ์„ฑ ๋ฐ ๋ถ„ํ•ด, ๊ธˆ์†์ด์˜จ ์ „๋‹ฌ์ž์— ์—ฐ๊ด€๋œ ์œ ์ „์ž๊ฐ€ ๋‹ค์ˆ˜ ํฌํ•จ๋œ ๊ฒƒ์œผ๋กœ ํ™•์ธ๋˜์—ˆ๋‹ค. ํ•ด๋‹น ์œ ์ „์ž์˜ ์œ ์ „์ž ๋ฐœํ˜„์„ ์ •๋Ÿ‰์  PCR๋กœ ๋ถ„์„ํ•œ ๊ฒฐ๊ณผ ์—ฝ๋ก์†Œ ์ƒํ•ฉ์„ฑ๊ณผ ์—ฐ๊ด€๋œ ์œ ์ „์ž๋Š” ํ™•์ธ๋˜์ง€ ์•Š์•˜์œผ๋ฉฐ, 7๊ฐœ์˜ ์ด์˜จ ์ „๋‹ฌ์ž ์œ ์ „์ž๋Š” ๋ฐœํ˜„์ด ๊ฐ์†Œ๋˜์—ˆ๊ณ  ์—ฝ๋ก์†Œ ๋ถ„ํ•ด ์œ ์ „์ž(chlorophyllase 2)๋Š” ๋ฐœํ˜„์ด ์ฆ๊ฐ€๋˜๋Š” ๊ฒƒ์œผ๋กœ ํ™•์ธ๋˜์—ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๋Š” ์—ฝ๋ก์†Œ ๋ฐ ๊ธˆ์†์ด์˜จ ์ „๋‹ฌ ๋Œ€์‚ฌ๊ณผ์ •์—์„œ ๋ฐœ์ƒ๋œ ๋Œ์—ฐ๋ณ€์ด๊ฐ€ ์—ฝ์ƒ‰์˜ ๋ณ€ํ™”๋ฅผ ๋ฏธ์นœ๋‹ค๋Š” ๊ฒƒ์„ ์˜๋ฏธํ•œ๋‹ค. ํŠน์ • ์ „ ์ฒ˜๋ฆฌ๋ฅผ ํ†ตํ•ด ๋ชฉํ‘œ ํ˜•์งˆ์˜ ์œ ์ „์ž ๋ฐœํ˜„์ด ์ฆ๊ฐ€๋œ ์ƒํƒœ์—์„œ ๊ฐ๋งˆ์„ ์„ ์ฒ˜๋ฆฌํ•  ๊ฒฝ์šฐ ๋ชฉํ‘œ ํ˜•์งˆ์˜ ๋Œ์—ฐ๋ณ€์ด ์œ ๊ธฐํšจ์œจ์ด ์ฆ์ง„๋  ์ˆ˜ ์žˆ๋Š”์ง€๋ฅผ ๋ถ„์„ํ•˜๊ธฐ ์œ„ํ•ด ์‹ฌ๋น„๋””์›€์˜ ์—ฝ์ƒ‰์„ ๋Œ€์ƒ์œผ๋กœ ๋ถ„์„์„ ํ•˜์˜€๋‹ค. ์‹ฌ๋น„๋””์›€ ๊ธฐ๋‚ด๋ฐฐ์–‘ ๋ผ์ด์ข€์„ ๊ด‘ ์กฐ์ ˆ(์•”์ฒ˜๋ฆฌ ๋ฐ ๊ด‘์ฒ˜๋ฆฌ)๋ฅผ ํ†ตํ•ด ์—ฝ๋ก์†Œ ์ƒํ•ฉ์„ฑ์„ ์œ ๋„ํ•œ ํ›„ ๊ฐ๋งˆ์„ ์„ ์กฐ์‚ฌํ•˜๊ณ  ์—ฝ์ƒ‰ ๋Œ์—ฐ๋ณ€์ด์˜ ๋ฐœ์ƒ ๋นˆ๋„๋ฅผ ๋ถ„์„ํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ 1์ฐจ ์žฌ๋ถ„ํ™”์ฒด์— ๋น„ํ•ด 2์ฐจ ์žฌ๋ถ„ํ™”์ฒด์—์„œ ์—ฝ์ƒ‰ ๋Œ์—ฐ๋ณ€์ด์˜ ๋ฐœ์ƒ ๋นˆ๋„๊ฐ€ ๋†’์•˜์œผ๋ฉฐ, ๊ด‘ ์กฐ์ ˆ ํ›„ ๊ฐ๋งˆ์„ ์„ ์กฐ์‚ฌํ•œ ๊ฒฝ์šฐ(RB003: ๋ณ€์ด๋นˆ๋„ 0.51%, RB012: ๋ณ€์ด๋นˆ๋„ 0.30%) ๊ฐ๋งˆ์„ ๋งŒ ์กฐ์‚ฌํ•œ(RB003: ๋ณ€์ด๋นˆ๋„ 0.37%, RB012: ๋ณ€์ด๋นˆ๋„ 0.15%) ์‹œํ—˜๊ตฌ์— ๋น„ํ•ด ์—ฝ์ƒ‰ ๋Œ์—ฐ๋ณ€์ด์˜ ๋ฐœ์ƒ ๋นˆ๋„๊ฐ€ 1.4-2.0๋ฐฐ ์ฆ์ง„๋œ ๊ฒƒ์œผ๋กœ ๋ถ„์„๋˜์—ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๊ฒฐ๊ณผ๋Š” ์‹ฌ๋น„๋””์›€์˜ ๋Œ์—ฐ๋ณ€์ด ์œก์ข…์—ฐ๊ตฌ์—์„œ ๋Œ์—ฐ๋ณ€์ด ์œ ๊ธฐ ๋ฐ ํ‚ค๋ฉ”๋ผ์˜ ์•ˆ์ •ํ™”, ๋ณ€์ด ์œ ๊ธฐ์ฆ์ง„ ๋“ฑ์— ์ค‘์š”ํ•œ ๊ธฐ์ดˆ์ž๋ฃŒ๋กœ ํ™œ์šฉ๋  ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€ํ•œ๋‹ค.GENERAL INTRODUCTION 1 REFERENCES 6 CHAPTER I. Effects of the total dose and duration of ฮณ-irradiation on the growth responses and induced SNPs of a Cymbidium hybrid 10 ABSTRACT 11 INTRODUCTION 12 MATERIALS AND METHODS 16 Plant materials 16 ฮณ-Irradiation 16 Evaluation of PLB growth responses 17 DNA extraction 17 GBS analysis 18 RESULTS 20 Effects of the total dose and irradiation duration on PLB growth responses 20 Estimated 50% lethal dose (LD50) and 50% reduction dose (RD50) 26 Evaluation of heterozygosity, natural variation, and induced SNPs. 29 DISCUSSION 32 Effects of the total dose and irradiation duration on PLB growth responses 32 Optimal ฮณ-irradiation for inducing mutations 35 Genome complexity and induced SNPs 36 REFERENCES 39 CHAPTER II. Frequency, spectrum, and stability of leaf mutants induced by diverse ฮณ-ray treatments in two Cymbidium hybrids 43 ABSTRACT 44 INTRODUCTION 45 MATERIALS AND METHODS 49 Plant materials 49 Optimal ฮณ-ray dose determination 49 Mutant population construction 50 Phenotype and stability analysis of leaf mutants 50 RESULTS 52 Effects of ฮณ-irradiation on rhizome growth parameters 52 Comparison of mutation frequency and spectrum among ฮณ-irradiated populations 55 Evaluation of stability among leaf mutants 60 DISCUSSION 64 Optimal ฮณ-irradiation condition for mutation induction 64 Frequency and spectrum of induced leaf mutants 65 Effects of short-term irradiation and re-irradiation on mutation induction 66 Stability of induced chimera mutants 68 REFERENCES 70 CHAPTER III. Transcriptome analysis to identify candidate genes associated with the yellow-leaf phenotype of a Cymbidium mutant generated by ฮณ-irradiation 73 ABSTRACT 74 INTRODUCTION 75 MATERIALS AND METHODS 78 Plant materials 78 RNA extraction 78 Quantitative real-time PCR (qRT-PCR) analysis 78 Chl and carotenoid content assay 79 RNA sequencing and de novo assembly 80 Functional annotation 80 Identification of differentially expressed genes between wild type and S12 mutant 81 RESULTS 83 Reduced accumulation of Chls and carotenoids in the S12 mutant 83 The implicated role of ion transport and Chl catabolism in the S12 phenotype according to DEG analysis 92 DISCUSSION 109 REFERENCES 113 CHAPTER IV. ฮณ-irradiation combined with light modulation increases the frequency of leaf-color mutation in Cymbidium 120 ABSTRACT 121 INTRODUCTION 122 MATERIALS AND METHODS 126 Plant materials 126 Light modulation 126 Chl analysis 127 RNA extraction and RT-qPCR analysis 127 ฮณ-ray treatments and evaluation of induced leaf mutants 128 Statistical analyses 129 RESULTS 130 Effect of light modulation on Chl degradation and biosynthesis 130 Effect of light modulation on Chl pathway gene expression 135 Induction frequency of Chl-related leaf-color mutants 137 DISCUSSION 141 Light modulation up-regulates gene expression in Chl pathway 141 Light modulation followed by ฮณ-ray treatment increases leaf-color mutation 143 REFERENCES 145 GENERAL CONCLUSION 152 ABSTRACT IN KOREAN 156Docto

    ์• ๊ธฐ์žฅ๋Œ€ ์œ ๋ž˜ Pseudouridine Kinase์˜ ๊ตฌ์กฐ์™€ ์ƒํ™”ํ•™์  ๊ธฐ๋Šฅ ๋ถ„์„

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๋†์—…์ƒ๋ช…๊ณผํ•™๋Œ€ํ•™ ๋†์ƒ๋ช…๊ณตํ•™๋ถ€, 2021.8. ์ด์ƒ๊ธฐ.RNA์˜ ๋ณ€ํ˜•์€ ์ข…๋ฅ˜๊ฐ€ ๋งค์šฐ ๋‹ค์–‘ํ•˜๋ฉฐ ๊ฐ๊ฐ RNA๋“ค์˜ ์•ˆ์ •์„ฑ, mRNA์™€ ๋‹จ๋ฐฑ์งˆ๋“ค๊ฐ„์˜ ์ƒํ˜ธ์ž‘์šฉ ๊ทธ๋ฆฌ๊ณ  ๋‹จ๋ฐฑ์งˆ๋กœ์˜ ๋ฒˆ์—ญ๊ณผ์ •์— ํšจ์œจ์„ฑ์„ ์กฐ์ ˆํ•˜๋Š” ๋“ฑ ๋‹ค์–‘ํ•œ ์—ญํ• ์„ ๋‹ด๋‹นํ•œ๋‹ค. ๋Œ€๋ถ€๋ถ„์˜ ๊ฒฝ์šฐ, RNA์˜ ๋ณ€ํ˜•์€ ํšจ์†Œ๋“ค์— ์˜ํ•ด์„œ ํŠน์ • RNA์— ๋ถ€์œ„ ํŠน์ด์ ์œผ๋กœ ์ผ์–ด๋‚œ๋‹ค. ์ด๋“ค์˜ ์ƒ๋ฌผํ•™์  ์—ญํ• , ์ƒํ•ฉ์„ฑ๊ณผ์ • ๊ด€๋ จ ์—ฐ๊ตฌ๋“ค๊ณผ ๋น„๊ตํ•ด ๋ณ€ํ˜•๋œ RNA ์˜ ๋ถ„ํ•ด ๊ด€๋ จ ์—ฐ๊ตฌ๋Š” ๋น„๊ต์  ๋ฏธ๋น„ํ•˜๋‹ค. ๊ฐ€์žฅ ๋งŽ์ด ๋ฐœ๊ฒฌ๋˜๋Š” RNA ๋ณ€ํ˜•์ค‘ ํ•˜๋‚˜์ธ pseudouridine์˜ ๋Œ€์‚ฌ ๊ด€๋ จ ํšจ์†Œ๋“ค์ด ์ตœ๊ทผ ์• ๊ธฐ์žฅ๋Œ€์—์„œ ๋™์ •์ด ๋˜์—ˆ๋‹ค. ์• ๊ธฐ์žฅ๋Œ€์—์„œ๋Š” ๋‘๊ฐœ์˜ ํšจ์†Œ์— ์˜ํ•ด pseudouridine์˜ ๋ถ„ํ•ด๋ฅผ ์ด‰๋งค๋œ๋‹ค: PSEUDOURIDINE KINASE (PUKI) ์™€ PSEUDOURIDINE MONOPHOSPHATE GLYCOSYLASE (PUMY). PUKI์™€ PUMY๋Š” pseudouridine์„ pseudouridine monophosphate๋กœ ์ธ์‚ฐํ™” ์‹œํ‚ค๋Š” ๊ณผ์ •๊ณผ pseudouridine monophosphate๋ฅผ uracil๊ณผ ribose 5โ€™-phosphate๋กœ ๊ฐ€์ˆ˜๋ถ„ํ•ดํ•˜๋Š” ๊ณผ์ •์„ ๊ฐ๊ฐ ์ด‰๋งค ํ•œ๋‹ค. ์ฐจ๋ก€๋กœ ํ•ด๋‹น ์‚ฐ๋ฌผ๋“ค์€ pyrimidine์˜ ์ผ๋ฐ˜์ ์ธ ๋Œ€์‚ฌ๊ณผ์ •์ด๋‚˜ ์žฌํ™œ์šฉ ๊ณผ์ •์— ์‚ฌ์šฉ๋œ๋‹ค. ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์—์„œ๋Š” pseudouridine ๋ถ„ํ•ด์˜ ์ฒซ๋ฒˆ์งธ๊ณผ์ •์„ ๋‹ด๋‹นํ•˜๋Š” ํšจ์†Œ์ธ ์• ๊ธฐ์žฅ๋Œ€ ์œ ๋ž˜ PUKI์˜ ๋‹จ๋ฐฑ์งˆ ์‚ผ์ฐจ ๊ตฌ์กฐ๋ฅผ ๋ถ„์„ํ•˜๊ณ , ๊ทœ๋ช…๋œ ๋‹จ๋ฐฑ์งˆ์˜ ๊ตฌ์กฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๊ธฐ์งˆ ํŠน์ด์„ฑ์— ๊ด€๋ จ๋œ ์ธ์ž๋“ค์„ ๋ฐํžˆ๊ณ ์ž ํ•œ๋‹ค. AtPUKI๋Š” PfkB family์— ์†ํ•˜๋Š” carbohydrate kinase๋กœ์จ, homodimer๊ฐ€ ์ƒ๋ฌผํ•™์  ๊ธฐ๋Šฅ ๋‹จ์œ„์ด๋‹ค. ๊ตฌ์กฐ์ ์ธ ํŠน์ง•์œผ๋กœ๋Š” ฮฑ/ฮฒ domain๋ฅผ ์ค‘์‹ฌ์œผ๋กœ ๊ฐ€์ง€๊ณ  ์žˆ์œผ๋ฉฐ, ์ด๋กœ๋ถ€ํ„ฐ ์œ ๋ž˜ํ•œ ฮฒ-strand domain๋กœ ๊ตฌ์„ฑ์ด ๋˜์–ด์žˆ๋‹ค. ํฅ๋ฏธ๋กญ๊ฒŒ๋„, ฮฒ-strand domain๋Š” dimerization interface๋ฅผ ์ œ๊ณตํ•˜๋Š” ๋™์‹œ์— ๊ธฐ์งˆ ํŠน์ด์„ฑ์„ ๊ฒฐ์ •์ง“๋Š” ์—ญํ• ์„ ์ˆ˜ํ–‰ํ•œ๋‹ค. AtPUKI, pseudouridine ๊ทธ๋ฆฌ๊ณ  ATP ๊ฒฐํ•ฉ๊ตฌ์กฐ๋ฅผ ํ† ๋Œ€๋กœ AtPUKI์—๋Š” pseudouridine์ด ๊ฒฐํ•ฉํ•  ์ˆ˜ ์žˆ๋Š” ๋…ํŠนํ•œ ๊ฒฐํ•ฉ๋ถ€์œ„๊ฐ€ ์กด์žฌํ•˜๋ฉฐ, ์ด๋Š” ์—ฌ๋Ÿฌ ๊ฐœ์˜ ์นœ์ˆ˜์„ฑ ์•„๋ฏธ๋…ธ์‚ฐ๋“ค์— ์˜ํ•ด ๋งค๊ฐœ๊ฐ€ ๋˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ํŠนํžˆ, ์ธ์ ‘ํ•œ ๋‹จ๋Ÿ‰์ฒด์˜ ฮฒ-strand domain๋กœ๋ถ€ํ„ฐ ์œ ๋ž˜ํ•œ loop ๋˜ํ•œ ๊ธฐ์งˆ์˜ ํŠน์ด์„ฑ์„ ๊ฒฐ์ •์ง“๋Š”๋ฐ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๋ฉฐ, ๊ตฌ์กฐ์ ์ธ ๋ณ€ํ™”์˜ ์ˆ˜๋ฐ˜์ด ์š”๊ตฌ๋œ๋‹ค๋Š” ๊ฒƒ์„ ์ œ์‹œํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ๋™์ ์ธ ํŠน์ง•์€ AtPUKI๊ฐ€ uridine๋ณด๋‹ค pseudouridine์— ๋†’์€ ์ด‰๋งค ํšจ์œจ์„ ๋ณด์ด๋Š” ์ด์œ ๋ฅผ ์ž˜ ์„ค๋ช…ํ•œ๋‹ค. ๋‘ ๊ธฐ์งˆ๋“ค์€ ๋ชจ๋‘ AtPUKI์™€ ๋น„์Šทํ•œ ๊ฒฐํ•ฉ ์นœํ™”๋„๋ฅผ ๋ณด์ด๋ฉฐ ์ž˜ ๊ฒฐํ•ฉํ•˜์ง€๋งŒ, ์˜ค์ง pseudouridine๋งŒ์ด AtPUKI์˜ ๊ตฌ์กฐ์ ์ธ ๋ณ€ํ™”๋ฅผ ์•ผ๊ธฐํ•˜๋ฉฐ ํšจ์†Œ์— ์˜ํ•ด ํšจ์œจ์ ์œผ๋กœ ๋ถ„ํ•ด๋œ๋‹ค(๋†’์€ turnover rate)๋Š” ๊ฒƒ์„ ์ œ์‹œํ–ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๋“ค์€ ์–ด๋–ป๊ฒŒ AtPUKI๊ฐ€ uridine์„ ํฌํ•จํ•˜๋Š” ๋‹ค๋ฅธ pyrimidine nucleoside์˜ ํ•ญ์ƒ์„ฑ์„ ๋ฐฉํ•ดํ•˜์ง€ ์•Š๊ณ , pseudouridine์˜ ์ธ์‚ฐํ™”์—๋งŒ ๊ด€์—ฌํ•˜๋Š”์ง€๋ฅผ ์ž˜ ์„ค๋ช…ํ•˜๋ฉฐ, ๋” ๋‚˜์•„๊ฐ€ PfkB family์— ์†ํ•˜๋Š” ๋‹ค์–‘ํ•œ ํšจ์†Œ๋“ค์˜ ๊ตฌ์กฐ์  ๊ทธ๋ฆฌ๊ณ  ๊ธฐ๋Šฅ์  ๋‹ค์–‘์„ฑ์˜ ์˜ˆ์‹œ๋กœ์„œ ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ๋‹ค.RNA modifications are chemically diverse site-specific events, achieved in most cases through an enzyme-dependent reaction. They regulate the stability of RNAs, mRNAโ€“protein interactions, and translation efficiency. Compared to studies related to the biological role and biosynthesis process of RNA modifications, studies on the degradation of modified RNA are relatively incomplete. Recently, metabolic fate of pseudouridine, one of the most prevalent modified RNAs, was characterized in plant Arabidopsis thaliana. In the A. thaliana, two enzymes are responsible for pseudouridine degradation: PSEUDOURIDINE KINASE (PUKI) and PSEUDOURIDINE MONOPHOSPHATE GLYCOSYLASE (PUMY). PUKI and PUMY are involved in phosphorylating pseudouridine into pseudouridine monophosphate and hydrolyzing pseudouridine monophosphate into uracil and ribose 5โ€™-phosphate, respectively. The resulting products can be subjected to a general pathway for pyrimidine catabolism or the salvage pathway. In this thesis, I conducted structural and biochemical analyses of PUKI from A. thaliana (AtPUKI), the enzyme catalyzing the first step in pseudouridine degradation. AtPUKI, a member of the phosphofructokinase B (PfkB) family of carbohydrate kinases, is a homodimeric ฮฑ/ฮฒ protein with a protruding small ฮฒ-strand domain, which serves simultaneously as dimerization interface and dynamic substrate specificity determinant. AtPUKI has a unique nucleoside binding site specifying the binding of pseudourine, of which one is mediated by a loop from the small ฮฒ-strand domain of the adjacent monomer. Conformational transition of the dimerized small ฮฒ-strand domains containing active site residues is required for substrate specificity. This dynamic feature explains the higher catalytic efficiency for pseudouridine over uridine. Both substrates bind well to the AtPUKI with similar Km value, but only pseudouridine is turned over efficiently. These results provide an example for structural and functional divergence in the PfkB family and highlight how AtPUKI avoids futile uridine phosphorylation which in vivo would disturb pyrimidine homeostasis.Introduction 1 RNA modification 2 Chemical property and role of pseudouridine 5 Catabolism of canonical pyrimidine nucleoside 6 Catabolism of non-canonical nucleotides 10 Materials and Methods 17 Cloning and purification of AtPUKI 18 Crystallization and structure determination 27 Activity assays 33 Results and Discussion 37 Structure of unliganded AtPUKI 38 Structural homologs of AtPUKI and the structure of the monovalent cation-binding site 47 The ternary complex of AtPUKI with pseudouridine and ADP 55 Functional features of the AtPUKI active site residues 67 High fidelity of AtPUKI for pseudouridine 88 The substrate pocket of AtPUKI in comparison to ribokinase and adenosine kinase 90 The Mg2+-binding site and catalysis in AtPUKI 93 Reference 97 Accession numbers 102 Abstract in Korean 103๋ฐ•

    Effect of Rollback in Triplet Loss based Deep Network for Person Re-Identification

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€,2019. 8. ์ตœ์ง„์˜.Person re-identification is the technique for matching information of the same person among images taken by several non-overlapping camera. It can be usefully applied to human tracking, visual surveillance, forensics and so on. Person re-identification has two main branches: "Cross-entropy method" based on image classification technique and "Triplet method" using image pair input and triplet loss function. Because each method has its own advantage, it is difficult to compare which method is proper to solve the open problem like person re-identification. In this paper, we compare Cross-entropy method and Triplet method, and apply the effect of rollback, which was previously used only for Cross-entropy method, to Triplet method. In addition, we propose an algorithm that can achieve better performance by applying both Cross-entropy method and Triplet method simultaneously.์‚ฌ๋žŒ ์žฌ์ธ์‹ (Person re-identification) ๊ธฐ์ˆ ์€ ์—ฌ๋Ÿฌ ๊ฐœ์˜ ๊ฒน์น˜์ง€ ์•Š๋Š” ์นด๋ฉ”๋ผ ๋ทฐ(camera view)๋กœ๋ถ€ํ„ฐ ์ดฌ์˜๋œ ์‚ฌ๋žŒ๋“ค์˜ ์ •๋ณด ์ค‘ ๋™์ผํ•œ ์‚ฌ๋žŒ์˜ ์ •๋ณด๋ฅผ ๋งค์นญ์‹œํ‚ค๋Š” ๊ธฐ์ˆ ์ด๋‹ค. ์ด๋Ÿฌํ•œ ๊ธฐ์ˆ ๋“ค์€ ๋Œ€์ธ ์ด๋™ ๊ฒฝ๋กœ ์ถ”์ , ๊ฐ์‹œ ์‹œ์Šคํ…œ(visual surveillance), ํฌ๋ Œ์‹(forensic) ๋“ฑ์— ์œ ์šฉํ•˜๊ฒŒ ์ ์šฉ๋  ์ˆ˜ ์žˆ๋‹ค. ์‚ฌ๋žŒ ์žฌ์ธ์‹ ๊ธฐ์ˆ ์€ ํฌ๊ฒŒ ๋‘๊ฐ€์ง€ ๋ฐฉํ–ฅ์„ฑ์„ ๊ฐ€์ง€๋Š”๋ฐ, ์ด๋ฏธ์ง€ ๋ถ„๋ฅ˜ ๊ธฐ๋ฐ˜์˜ cross-entropy ์†์‹คํ•จ์ˆ˜๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ๋ฐฉ๋ฒ•๊ณผ ์ด๋ฏธ์ง€ ์Œ์„ ์ž…๋ ฅ๋ฐ›์•„ triplet ์†์‹คํ•จ์ˆ˜๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ๋ฐฉ๋ฒ•์ด ์žˆ๋‹ค. ๊ฐ๊ฐ์˜ ๋ฐฉ๋ฒ•๋“ค์˜ ๊ณ ์œ ํ•œ ํŠน์„ฑ ๋•Œ๋ฌธ์— ์–ด๋–ค ๋ฐฉ๋ฒ•์ด ์—ด๋ฆฐ ์ง‘ํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๋Š”๋ฐ ๋” ์œ ๋ ฅํ•œ ๋ฐฉ๋ฒ•์ด๋ผ๊ณ  ๋น„๊ตํ•˜๊ธฐ๋Š” ์–ด๋ ต๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—๋Š” ์ด๋ฏธ์ง€ ๋ถ„๋ฅ˜ ๊ธฐ๋ฐ˜์˜ ๋ฐฉ๋ฒ•๊ณผ triplet ์†์‹คํ•จ์ˆ˜ ๊ธฐ๋ฐ˜์˜ ๋ฐฉ๋ฒ•์„ ๋น„๊ตํ•˜๊ณ , ๊ธฐ์กด์—๋Š” ์ด๋ฏธ์ง€ ๋ถ„๋ฅ˜ ๊ธฐ๋ฐ˜์˜ ๋ฐฉ๋ฒ•์—๋งŒ ํ™œ์šฉ๋˜์—ˆ๋˜ ๋กค๋ฐฑ(Rollback)์˜ ํšจ๊ณผ๋ฅผ triplet ์†์‹คํ•จ์ˆ˜ ๊ธฐ๋ฐ˜์˜ ๋ฐฉ๋ฒ•์—๋„ ์ ์šฉํ•˜์—ฌ ํ•ด๋‹น ๋ฐฉ๋ฒ•์— ๋Œ€ํ•œ ๋กค๋ฐฑ์˜ ์œ ์šฉ์„ฑ์„ ๊ฒ€ํ† ํ•˜์˜€๋‹ค. ์ถ”๊ฐ€๋กœ, ์‚ฌ๋žŒ ์žฌ์ธ์‹ ๊ธฐ์ˆ ์˜ ๋‘ ๋ฐฉ๋ฒ•์„ ๋™์‹œ์— ์ ์šฉํ•˜์—ฌ ๋” ์ข‹์€ ์„ฑ๋Šฅ์„ ๋‚ด๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•˜์˜€๋‹ค1 ์„œ๋ก  1 1.1 ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 ์—ฐ๊ตฌ ๋‚ด์šฉ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 ๋ฐฐ๊ฒฝ ์ง€์‹ 4 2.1 ์„ ํ–‰ ์—ฐ๊ตฌ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1.1 ์‚ฌ๋žŒ ์žฌ์ธ์‹ ๋ฐ์ดํ„ฐ์…‹์˜ ๊ฒฝํ–ฅ . . . . . . . . . . . . . . . . . 4 2.1.2 ์‚ฌ๋žŒ ์žฌ์ธ์‹ ๊ธฐ์ˆ ์˜ ๋ฐฉ๋ฒ• . . . . . . . . . . . . . . . . . . . 5 2.1.3 ํ•™์Šต ์ „๋žต ๊ฐœ์„ ์— ๋Œ€ํ•œ ๊ธฐ์กด์˜ ์—ฐ๊ตฌ๋“ค . . . . . . . . . . . . 6 2.2 ๋ฐฐ๊ฒฝ ์ด๋ก  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.1 ์ด๋ฏธ์ง€ ๋ถ„๋ฅ˜๋ฅผ ์œ„ํ•œ ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์—์„œ cross-entropy ์†์‹คํ•จ์ˆ˜ 7 2.2.2 ์‚ฌ๋žŒ ์žฌ์ธ์‹์„ ์œ„ํ•œ ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์—์„œ์˜ triplet ์†์‹คํ•จ์ˆ˜ . . . 8 2.2.3 ๋ฐ์ดํ„ฐ ์ฆ๊ฐ€ . . . . . . . . . . . . . . . . . . . . . . . . . . 10 ii 3 ์ œ์•ˆ ๋ฐฉ๋ฒ• 12 3.1 Cross-entropy ๋ฐฉ๋ฒ•์˜ ์‚ฌ๋žŒ ์žฌ์ธ์‹ ๋„คํŠธ์›Œํฌ ๊ตฌ์กฐ . . . . . . . . . . 12 3.2 Triplet ๋ฐฉ๋ฒ•์˜ ์‚ฌ๋žŒ ์žฌ์ธ์‹ ๋„คํŠธ์›Œํฌ ๊ตฌ์กฐ . . . . . . . . . . . . . . 13 3.3 Cross-entropy ๋ฐฉ๋ฒ•๊ณผ Triplet ๋ฐฉ๋ฒ•์„ ํ†ตํ•ฉํ•œ ์‚ฌ๋žŒ ์žฌ์ธ์‹ ๋„คํŠธ์›Œํฌ ๊ตฌ์กฐ 15 3.4 ๋กค๋ฐฑ(Rollback)์˜ ์ ์šฉ . . . . . . . . . . . . . . . . . . . . . . . . . 17 4 ์‹คํ—˜ ๊ฒฐ๊ณผ 19 4.1 ํ•ฉ์„ฑ๊ณฑ ์‹ ๊ฒฝ๋ง ๊ธฐ๋ฐ˜ ์‚ฌ๋žŒ ์žฌ์ธ์‹ ๋ฐฉ๋ฒ•์˜ ํ•™์Šต๊ณผ ํ…Œ์ŠคํŠธ . . . . . . . 19 4.1.1 ์‚ฌ๋žŒ ์žฌ์ธ์‹ ๊ธฐ์ˆ ์˜ ์„ฑ๋Šฅ ์ธก์ • ๋ฉ”ํŠธ๋ฆญ . . . . . . . . . . . . 19 4.1.2 ํ•™์Šต ๋ฐฉ๋ฒ• . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.1.3 ํ…Œ์ŠคํŠธ ๋ฐฉ๋ฒ• . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.2 ์‹คํ—˜ ๊ฒฐ๊ณผ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.2.1 ์‹คํ—˜ ์„ธ๋ถ€์‚ฌํ•ญ . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.2.2 Cross-entropy ๋ฐฉ๋ฒ•์˜ ๋น„๊ต ์‹คํ—˜ . . . . . . . . . . . . . . . . 24 4.2.3 Triplet ๋ฐฉ๋ฒ•์˜ ๋น„๊ต ์‹คํ—˜ . . . . . . . . . . . . . . . . . . . . 25 4.2.4 ํ†ตํ•ฉ ๋„คํŠธ์›Œํฌ์˜ ๋น„๊ต ์‹คํ—˜ . . . . . . . . . . . . . . . . . . 26 4.2.5 ํ†ตํ•ฉ ๋„คํŠธ์›Œํฌ์—์„œ ๋กค๋ฐฑ์˜ ํšจ๊ณผ . . . . . . . . . . . . . . . . 27 4.2.6 ์‹คํ—˜ ๊ฒฐ๊ณผ ์ข…ํ•ฉ . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.2.7 ๊ฐ scheme ๋ณ„ ํ†ตํ•ฉ๋„คํŠธ์›Œํฌ์˜ ์„ฑ๋Šฅ . . . . . . . . . . . . . . 29 4.2.8 ๊ธฐ์กด์— ๊ฐ€์žฅ ๋†’์€ ์„ฑ๋Šฅ์„ ๋ฐœํœ˜ํ•˜๋Š” ์‚ฌ๋žŒ ์žฌ์ธ์‹ ๋„คํŠธ์›Œํฌ๋“ค ๊ณผ ํ†ตํ•ฉ ๋„คํŠธ์›Œํฌ์˜ ์„ฑ๋Šฅ ๋น„๊ต . . . . . . . . . . . . . . . . . 30 5 ๊ฒฐ๋ก  31Maste

    ์‹œ๊ฐ„์„ฑ์˜ ์„ ์  ์ด๋ฏธ์ง€๋ฅผ ๊ฐ€์ง„ ๊ธฐ๋ฌผ ์ œ์ž‘ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๋””์ž์ธํ•™๋ถ€, 2017. 2. ๋ฏผ๋ณต๊ธฐ.๋ณธ ๋…ผ๋ฌธ์€ ํŒ๊ธˆ์ž‘์—…์€ ๋น„๊ต์  ๊ธด ์‹œ๊ฐ„์ด ์†Œ์š”๋˜๋Š” ํ–‰์œ„๋ผ๋Š” ๊ฒƒ์ด ์—ฐ๊ตฌ์˜ ๋™๊ธฐ๊ฐ€ ๋˜์—ˆ๋‹ค. ์‹œ๊ฐ„์„ ์‹ฌ๋ฆฌ์ ์ด๊ณ  ์ฃผ๊ด€์ ์ธ ๊ด€์ ์—์„œ, ์˜์›(ๆฐธ้ )์˜ ์‹œ๊ฐ„, ํ๋ฅด๋Š” ์‹œ๊ฐ„, ์ฐฐ๋‚˜(ๅˆน้‚ฃ)์˜ ์‹œ๊ฐ„์œผ๋กœ ๋ถ„๋ฅ˜๋กœ ์„ธ๋ถ„ํ™”ํ•˜์˜€๋‹ค. ์—ฐ๊ตฌ๋Š” ์ด์™€ ๊ฐ™์ด ์‹œ๊ฐ„์— ๋Œ€ํ•œ ์„ธ ๊ฐ€์ง€ ๋ถ„๋ฅ˜๋ฅผ ์ค‘์‹ฌ์œผ๋กœ, ์ด๋Ÿฌํ•œ ์‹œ๊ฐ„์˜ ๊ฐœ๋…์„ ๋“œ๋Ÿฌ๋‚ด๋Š”, ์˜ค๋ž˜๋œ ๋ฐ”์œ„๋‚˜ ๋‚˜๋ฌด ๊ฐ™์€ ์ž์—ฐ๋ฌผ์˜ ์ด๋ฏธ์ง€๋ฅผ ์ž‘ํ’ˆ์˜ ๋ชจํ‹ฐ๋ธŒ๋กœ ํ™œ์šฉํ•˜์˜€๋‹ค. ์ž์—ฐ์€ ์˜์›๊ณผ ์ˆœ๊ฐ„, ๋ถˆ๋ณ€ ํ˜น์€ ๋ณ€ํ™”์™€ ๊ด€๋ จ๋˜๋Š” ์‹œ๊ฐ„์˜ ๋ฐฉํ–ฅ์„ฑ์„ ํšจ๊ณผ์ ์œผ๋กœ ๋ณด์—ฌ์ฃผ๋Š” ์†Œ์žฌ๋ผ๊ณ  ์ƒ๊ฐํ–ˆ๊ธฐ ๋•Œ๋ฌธ์— ์ด๋ฅผ ํŒ๊ธˆ๊ธฐ๋ฒ•์„ ์‚ฌ์šฉํ•˜๋Š” ๊ธฐ๋ฌผ์— ์ ‘๋ชฉ์‹œ์ผœ ๋ณด๊ณ ์ž ํ•œ๋‹ค. ์‹œ๊ฐ„๊ณผ ์ž์—ฐ์˜ ์—ฐ๊ด€์„ฑ์„ ์„ค๋ช…ํ•˜๊ธฐ ์œ„ํ•ด ๋ฌผ๋ฆฌ์  ์‹œ๊ฐ„, ์‹ฌ๋ฆฌ์  ์‹œ๊ฐ„์˜ ๊ฐœ๋…์„ ์‚ดํŽด๋ณด๊ณ  ์‹œ์  ์‹ฌ์ƒ์„ ํ™œ์šฉํ•˜์—ฌ ์ž์—ฐ๋ฌผ๊ณผ ์ž‘ํ’ˆ์˜ ๊ฐ์„ฑ์  ์—ฐ๊ด€๊ด€๊ณ„๋ฅผ ์ „๋‹ฌํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ์ž์—ฐ์— ์กด์žฌํ•˜๋Š” ๋‹ค์ˆ˜์˜ ์„ ์  ์ด๋ฏธ์ง€๋Š” ๋ฌธํ•™์ž‘ํ’ˆ์„ ํ†ตํ•ด ๊ทธ ๊ฐ์„ฑ์„ ํšจ๊ณผ์ ์œผ๋กœ ์ „๋‹ฌํ•  ๊ฒƒ์ด๋‹ค. ์‹œ๊ฐ„์˜ ์„ธ ๊ฐ€์ง€ ๋ถ„๋ฅ˜์— ๋”ฐ๋ฅธ ์ž์—ฐ๋ฌผ์˜ ๊ฐ์„ฑ์  ์ธก๋ฉด์„ ์‚ดํŽด๋ณด๋ฉด ์ฒซ์งธ, ์˜์›์— ๊ฐ€๊นŒ์šด ์‹œ๊ฐ„ ํฌ๊ธฐ๋ฅผ ๊ฐ€์ง„ ์ž์—ฐ๋ฌผ๋กœ ๊นŽ์ธ ์ ˆ๋ฒฝ, ๋งˆ๋ชจ๋˜์–ด ๋ถ€๋“œ๋Ÿฌ์›Œ์ง„ ๋Œ, ์šธ์ฐฝํ•˜๊ฒŒ ์šฐ๊ฑฐ์ง„ ์ˆฒ ๋“ฑ์„ ์˜ˆ๋กœ ๋“ค ์ˆ˜ ์žˆ๋‹ค. ์ด ์ž์—ฐ๋ฌผ๋“ค์€ ์„œ์‚ฌ์  ์„ฑ๊ฒฉ์„ ์ง€๋‹ˆ๋ฉฐ ์ธ๋‚ด์‹ฌ, ๊ณ ๋…, ์™ธ๋กœ์›€, ์‹œ๋ จ, ๊ฒฝ์™ธ ๊ฐ™์€ ์ •์ ์ธ ๊ฐ์ •๋“ค์„ ๋– ์˜ฌ๋ฆฌ๊ฒŒ ํ•˜๋Š” ๋งค๊ฐœ์ฒด๊ฐ€ ๋œ๋‹ค. ๋‘˜์งธ, ํ๋ฅด๋Š” ์‹œ๊ฐ„์˜ ์†์„ฑ์„ ๊ฐ€์ง„ ์ž์—ฐ๋ฌผ๋กœ ๋ฐ”๋žŒ์ด ๋งŒ๋“ค์–ด ๋‚ธ ๋ชจ๋ž˜์‚ฌ์žฅ์˜ ๋ชจ๋ž˜์˜ ๊ฒฐ, ๊ณ„์†ํ•ด์„œ ์ถœ๋ ์ด๋Š” ๋ฌผ์˜ ํ‘œ๋ฉด์„ ์˜ˆ๋กœ ๋“ค ์ˆ˜ ์žˆ๋‹ค. ์ด๊ฒƒ์€ ๊ด€์„ฑ์„ ๊ฐ€์ง„ ์ง€์†์„ฑ๊ณผ ๋ฐ˜๋ณต์„ฑ์„ ์ง€๋‹Œ ์ž์—ฐ๋ฌผ๋กœ, ์ผ์ƒ์˜ ๊ฐ์ •์„ ์ž์•„๋‚ด๋ฉด์„œ๋„ ์ง€๋ฃจํ•˜์ง€ ์•Š๊ณ  ๊ณ„์† ์ง€์ผœ๋ณด๊ฒŒ ๋งŒ๋“œ๋Š” ํž˜์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ์ฐฐ๋‚˜์˜ ์‹œ๊ฐ„ ์†์„ฑ์„ ๊ฐ€์ง„ ์ž์—ฐ๋ฌผ๋กœ ์•ˆ๊ฐœ๋น„๊ฐ€ ํฉ๋‚ ๋ ค ๋‚ด๋ฆฌ๋Š” ์ˆœ๊ฐ„๊ณผ ๋‚˜๋ญ‡์žŽ ์‚ฌ์ด๋กœ ๋“ค์–ด์˜ค๋Š” ๋ฐ˜์ง์ด๋Š” ํ–‡์‚ด์˜ ์ด๋ฏธ์ง€๋ฅผ ๋“ค ์ˆ˜ ์žˆ๋‹ค. ์ฐฐ๋‚˜์˜ ์ด๋ฏธ์ง€๋Š” ๋ˆˆ์œผ๋กœ ๋ณด๋Š” ์ˆœ๊ฐ„ ์—†์–ด์ ธ ๋ฒ„๋ฆฌ๊ณ  ์ˆœ๊ฐ„์˜ ๊ฐ์ •์œผ๋กœ๋งŒ ๊ธฐ์–ต ํ•  ์ˆ˜ ์žˆ๋Š” ํŠน์„ฑ์ด ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ๊ฐ๊ฐ์˜ ์ž์—ฐ๋ฌผ์˜ ์„ ์ ์ด๋ฏธ์ง€๋ฅผ ๊ธฐ๋ฌผ์— ๋‚˜ํƒ€๋ƒ„์œผ๋กœ์จ ์ด์™€ ๊ฐ™์€ ๊ฐ์„ฑ์  ์ธก๋ฉด์ด ์ „๋‹ฌ๋˜๋„๋ก ํ•˜์˜€๋‹ค.โ… . ๋“ค์–ด๊ฐ€๋Š” ๋ง 1 โ…ก. ์‹œ๊ฐ„์˜ ํ๋ฆ„๊ณผ ์ž์—ฐ์˜ ์„ ์  ์ด๋ฏธ์ง€ 3 1. ์‹œ๊ฐ„์˜ ์†์„ฑ๊ณผ ์ž์—ฐ์˜ ์„ ์  ์ด๋ฏธ์ง€์™€์˜ ๊ด€๊ณ„ 3 1.1. ์‹œ๊ฐ„์˜ ์†์„ฑ๊ณผ ์ž์—ฐ์˜ ์„ ์  ์ด๋ฏธ์ง€ 3 1.2. ์˜์›(ๆฐธ้ )์˜ ์‹œ๊ฐ„๊ณผ ๊ด€๋ จ๋œ ์ž์—ฐ์˜ ์„ ์  ์ด๋ฏธ์ง€ 5 1.3. ํ๋ฅด๋Š” ์‹œ๊ฐ„๊ณผ ๊ด€๋ จ๋œ ์ž์—ฐ์˜ ์„ ์  ์ด๋ฏธ์ง€ 6 1.4. ์ฐฐ๋‚˜(ๅˆน้‚ฃ)์˜ ์‹œ๊ฐ„๊ณผ ๊ด€๋ จ๋œ ์ž์—ฐ์˜ ์„ ์  ์ด๋ฏธ์ง€ 7 2. ์‹œ๊ฐ„์˜ ์„ธ ๊ฐ€์ง€ ๋ถ„๋ฅ˜์— ๋”ฐ๋ฅธ ๊ฐ์ • 9 โ…ข . ์ž‘ํ’ˆ์—ฐ๊ตฌ 15 1. ๊ธด ์‹œ๊ฐ„์  ์†์„ฑ์„ ๊ฐ€์ง„ ์ž์—ฐ์ด๋ฏธ์ง€๋ฅผ ๋ชจํ‹ฐ๋ธŒ๋กœ ํ•œ ์ž‘ํ’ˆ 17 ์ž‘ํ’ˆ 1. ๊นŽ์ธ ์ ˆ๋ฒฝ 18 ์ž‘ํ’ˆ 2. ๋ถ€๋“œ๋Ÿฌ์›Œ์ง„ ๋Œ 23 ์ž‘ํ’ˆ 3. ์šธ์ฐฝํ•œ ์ˆฒ 27 2. ํ๋ฅด๋Š” ์‹œ๊ฐ„์˜ ์†์„ฑ์„ ๊ฐ€์ง„ ์ž์—ฐ์ด๋ฏธ์ง€๋ฅผ ๋ชจํ‹ฐ๋ธŒ๋กœ ํ•œ ์ž‘ํ’ˆ 30 ์ž‘ํ’ˆ 4. ๋ชจ๋ž˜์‚ฌ์žฅ์˜ ๋ชจ๋ž˜ 30 ์ž‘ํ’ˆ 5. ํ๋ฅด๋Š” ๋ฌผ์ค„๊ธฐ 34 3. ์ฐฐ๋‚˜์˜ ์‹œ๊ฐ„์  ์†์„ฑ์„ ๊ฐ€์ง„ ์ž์—ฐ์ด๋ฏธ์ง€๋ฅผ ๋ชจํ‹ฐ๋ธŒ๋กœ ํ•œ ์ž‘ํ’ˆ 39 ์ž‘ํ’ˆ 6. ํฉ๋‚ ๋ฆฌ๋Š” ์•ˆ๊ฐœ๋น„ 39 ์ž‘ํ’ˆ 7. ๋ฐ˜์ง์ด๋Š” ํ–‡์‚ด 42 โ…ฃ. ๊ฒฐ๋ก  45 ์ฐธ๊ณ ๋ฌธํ—Œ 48 Abstract 50Maste

    SKํ…”๋ ˆ์ฝค MelOn

    Get PDF
    2006๋…„ 8์›”, ์„œ์šธ์‹œ ์ค‘๊ตฌ ์„์ง€๋กœ2๊ฐ€์— ์ž๋ฆฌ์žก์€ SKํ…”๋ ˆ์ฝค์˜ ์‚ฌ์˜ฅT-ํƒ€์›Œ๋Š” ํ•œ๋ฐค ์ค‘์—๋„ ์ž ๋“ค ์ง€ ์•Š์•˜๋‹ค. ๋ถˆ์„ ํ™˜ํ•˜๊ฒŒ ๋ฐํžŒ ์ด ๊ฑด๋ฌผ 11์ธต์˜ SKํ…”๋ ˆ์ฝค ์ฝ˜ํ…์ธ  ์‚ฌ์—…๋ณธ๋ถ€. ์ž„์ง์›์€ ์—ด๋ค ํ† ๋ก ์„ ํŽผ ์น˜๋ฉฐ ์‹œ๊ฐ„ ๊ฐ€๋Š” ์ค„ ๋ชฐ๋ž๋‹ค. ์ฝ˜ํ…์ธ  ์‚ฌ์—…๋ณธ๋ถ€์žฅ์ธ ์‹ ์›์ˆ˜ SKํ…”๋ ˆ์ฝค ์ƒ๋ฌด์™€ ๋ช‡๋ช‡ ์ง์›๋“ค์€ SKํ…”๋ ˆ์ฝค์˜ ๋ฎค์งํฌํ„ธ๋ฉœ๋ก  (www.melon.com)์˜ ํ–ฅํ›„ ๋‚˜์•„๊ฐˆ ๊ธธ์— ๋Œ€ํ•ด ๊ฐ‘๋ก ์„๋ฐ• ๋‹ค์ฑ„๋กœ์šด ์˜๊ฒฌ์„ ๋‚ด๋†“์•˜๋‹ค. ์‹ ์›์ˆ˜ ์ƒ๋ฌด๋Š” ๋ฉœ๋ก ์„ ์œ„ํ•ด ๊ฐœ๋ฐœํ•œ SKํ…”๋ ˆ์ฝค ๊ณ ์œ ์˜ DRM(Digital Right Management: ๋””์ง€ํ„ธ์ €์ž‘๊ถŒ๊ด€๋ฆฌ)์„ ๋ณด ๋‹ค ๋‹ค๋ฅธ ์‹œ๊ฐ์œผ๋กœ ๊ฒ€ํ† ํ•ด๋ณผ ํ•„์š”๊ฐ€ ์žˆ๋‹ค๋ฉด์„œ์•ž์œผ๋กœ DRM์„ ๊ฐœ๋ฐฉํ•œ๋‹ค๋ฉด, ์ˆ˜์ต์€ ์ค„๊ฒ ์ง€๋งŒ ์‚ฌ์šฉ ์ž ๊ธฐ๋ฐ˜์€ ๋„“์–ด์งˆ ๊ฒƒ์ด๋ผ๊ณ  ๋งํ–ˆ๋‹ค. DRM์„ ๊ฐœ๋ฐฉํ•œ๋‹ค๋Š” ๋ง์€ ๋ฌด์Šจ ์˜๋ฏธ์ผ๊นŒ. ํ˜„์žฌ SKํ…”๋ ˆ์ฝค์˜ ๋ฉœ๋ก ์€ SKํ…”๋ ˆ์ฝค๊ณผ ์ œํœดํ•œ ์ œ์กฐ์—…์ฒด ์˜ MP3ํ”Œ๋ ˆ์ด์–ด, ํœด๋Œ€์ „ํ™”๋กœ๋งŒ ๋ฉœ๋ก ์˜ ์Œ์•…์„ ๋‹ค์šด๋กœ๋“œ ํ•˜๋„๋ก ํ•˜๊ณ  ์žˆ๋‹ค. ์•„์šธ๋Ÿฌ ๋ฉœ๋ก  ๊ณ ๊ฐ์˜ ๋‹จ๋ง๊ธฐ๋กœ ๋“ฑ๋กํ•œ ํœด๋Œ€์ „ํ™” 1๋Œ€, MP3 ํ”Œ๋ ˆ์ด์–ด 1๋Œ€์—์„œ๋งŒ ์ด์šฉ ๊ฐ€๋Šฅํ•˜๋‹ค. DRM์„ ๊ฐœ๋ฐฉํ•˜๋ฉด SKํ…”๋ ˆ์ฝค ๊ณ ๊ฐ๋„ ๋ฉœ๋ก ์ด ์•„๋‹Œ ๋‹ค๋ฅธ ์œ ๋ฃŒ ์Œ์•…์‚ฌ์ดํŠธ์—์„œ ๊ตฌ๋งคํ•œ ์Œ์•…์„ ์ž ์‹ ์˜ MP3ํฐ์— ์˜ฎ๊ฒจ์„œ ๋“ค์„ ์ˆ˜ ์žˆ๊ฒŒ ๋œ๋‹ค. ์ฆ‰ DRM์€ ์Œ์•… ๋“ฑ ๋””์ง€ํ„ธ ์ฝ˜ํ…ํŠธ์˜ ๋ฌด๋‹จ ์‚ฌ์šฉ์„ ๋ง‰ ์•„ ์ €์ž‘๊ถŒ ๊ด€๋ จ ๋‹น์‚ฌ์ž๋“ค์˜ ์ด์ต๊ณผ ๊ถŒ๋ฆฌ๋ฅผ ๋ณดํ˜ธํ•ด ์ฃผ๋Š” ์ผ์ข…์˜๋””์ง€ํ„ธ ์ž๋ฌผ์‡ ์—ญํ• ์„ ํ•˜๊ณ  ์žˆ๋‹ค

    Study on the operation efficiency of steel stock yard using simulation

    Get PDF
    In shipbuilding industry, The steel plate is a representative material constituting the structural part of the hull such as outer panel, inner panel and reinforcing material, which corresponds to about 10% to 12% of the ship price. These steel plate that are produced in steelworks is come in the shipyard and sent to steel stock yard. Therefore, in order to prevent the delay of the process and to observe the delivery date, a management system is required to allow the stocked steel to be input to the pre-treatment process in a timely manner. However, the steel plate used in the shipyard varies in size and material, and the contracts are concluded for several steelworks, so that the variability of the day of arrival is large. Therefore, time and cost are wasted due to the relocation of the steel during the process of moving the steel plate during the stacking and dispensing operations. In order to solve these problems, this study constructed dispatching model by using discrete event simulation(DES). Through this, it is aimed to explore the best way to operate the steel stock yard efficiently while minimizing the movement fo the crane while maintaining the quality of the steel plates.List of Tables โ…ฒ List of Figures โ…ณ Abstract โ…ด 1. ์„œ ๋ก  1 1.1 ์—ฐ๊ตฌ๋ฐฐ๊ฒฝ 1 1.2 ๊ด€๋ จ ์—ฐ๊ตฌ ๋™ํ–ฅ 3 1.3 ์—ฐ๊ตฌ ๋ชฉ์  5 2. ์ ์šฉ๊ฐœ๋… 6 2.1 ์ด์‚ฐ ์‚ฌ๊ฑด ์‹œ๋ฎฌ๋ ˆ์ด์…˜ 6 2.1.1 Resource centric simulation 6 2.1.2 Process centric simulation 8 2.2 AnyLogic ์†”๋ฃจ์…˜ 9 2.3 ๊ฒฝ์ œ์„ฑ ๋ถ„์„ 11 3. ๊ฐ•์žฌ์ ์น˜์žฅ ๋ถ„์„ 14 3.1 ์กฐ์„ ์†Œ ๊ฐ•์žฌ ์ฃผ๋ฌธ ํ”„๋กœ์„ธ์Šค 14 3.2 ์กฐ์„ ์†Œ ๊ฐ•์žฌ ์ž…๊ณ  ๋ฐ ๋ถˆ์ถœ ํ”„๋กœ์„ธ์Šค 15 3.3 ๊ฐ•์žฌ์ ์น˜์žฅ ์šด์˜์ƒ์˜ ๋ฌธ์ œ์  17 3.4 ๊ฐ•์žฌ์ ์น˜์žฅ ๋ ˆ์ด์•„์›ƒ ๋ถ„์„ 18 3.5 ๊ฐ•์žฌ์ ์น˜์žฅ ๊ฐ•์žฌ ์ •๋ณด ๋ถ„์„ 21 4. ๊ฐ•์žฌ์ ์น˜์žฅ ๋ชจ๋ธ๋ง 23 4.1 ๊ฐ•์žฌ์ ์น˜์žฅ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ํ”Œ๋žซํผ 23 4.2 ๊ฐ•์žฌ์ ์น˜์žฅ ์šด์˜ ํ”„๋กœ์„ธ์Šค ์ •์˜ 24 4.3 ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋‹จ์œ„ ๋ชจ๋ธ ๊ตฌํ˜„ 31 4.3.1 ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋‹จ์œ„ ๋ชจ๋ธ ๊ฒ€์ฆ 31 4.4 ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ชจ๋ธ ๊ตฌํ˜„ 33 4.4.1 ๊ฐ์ฒด(Agent) ์ •์˜ 33 4.4.2 ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ณ€์ˆ˜ ์ •์˜ 36 4.4.3 Collection ์ •์˜ 39 4.4.4 Statechart ์ •์˜ 41 4.5 ๊ฐ•์žฌ์ ์น˜์žฅ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ชจ๋ธ ๊ตฌ์ถ• 43 5. ๊ฐ•์žฌ์ ์น˜์žฅ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ์ˆ˜ํ–‰ ๋ฐ ๊ฒฐ๊ณผ ๋ถ„์„ 56 5.1 ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ์ผ€์ด์Šค ์ •์˜ 56 5.2 ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒฐ๊ณผ ์ง€ํ‘œ ์ •์˜ 58 5.3 ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒฐ๊ณผ ๋ถ„์„ 59 5.4 TDABC ๋ถ„์„ 63 5.5 ๊ฐ•์žฌ์ž…๊ณ ๊ณ„ํš ์ˆ˜๋ฆฝ 76 6. ๊ฒฐ๋ก  78 6.1 ์—ฐ๊ตฌ ๊ฒฐ๋ก  78 References 79Maste

    ์†Œ๊ทœ๋ชจ๋งฅ์ฃผ ์ œ์กฐ์—…์„ ์ค‘์‹ฌ์œผ๋กœ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ํ–‰์ •๋Œ€ํ•™์› ํ–‰์ •ํ•™๊ณผ(์ •์ฑ…ํ•™์ „๊ณต), 2020. 8. ๊น€๋ด‰ํ™˜.๋ณธ ์—ฐ๊ตฌ๋Š” 2020๋…„๋ถ€ํ„ฐ ์‹œํ–‰๋œ ๋งฅ์ฃผ์˜ ์ข…๋Ÿ‰์„ธ ์ „ํ™˜์„ ๊ณจ์ž๋กœ ํ•œ ์ฃผ์„ธ๋ฒ• ๊ฐœ์ • ์‚ฌ๋ก€์™€, ๋งฅ์ฃผ์˜ ์ข…๋Ÿ‰์„ธ ์ „ํ™˜์„ ๊ฒ€ํ† ํ•˜์˜€์œผ๋‚˜ ์‹คํŒจํ•œ 2014๋…„ ์ฃผ์„ธ๋ฒ• ์‹œํ–‰๋ น ๊ฐœ์ • ์‚ฌ๋ก€๋ฅผ ์ •์ฑ…์˜นํ˜ธ์—ฐํ•ฉ๋ชจํ˜•์„ ์ ์šฉํ•˜์—ฌ ๋ถ„์„ํ•˜์˜€๋‹ค. ์ •์ฑ…์˜นํ˜ธ์—ฐํ•ฉ๋ชจํ˜•์˜ ์—ฌ๋Ÿฌ ์š”์ธ ์ค‘ ์•ˆ์ •์  ์™ธ์ ๋ณ€์ˆ˜, ์—ญ๋™์  ์™ธ์ ๋ณ€์ˆ˜, ์ •์ฑ…ํ•˜์œ„์ฒด์ œ 3๊ฐ€์ง€๋ฅผ ์ฃผ์š” ์š”์ธ์œผ๋กœ ์„ค์ • ํ›„ ์‚ฌ๋ก€๋ณ„๋กœ ๋น„๊ต ๋ถ„์„ํ•˜์—ฌ ์–ด๋– ํ•œ ์š”์ธ์ด ์ •์ฑ… ์‚ฐ์ถœ์˜ ์ฐจ์ด๋ฅผ ๋„์ถœํ•˜์˜€๋Š”์ง€ ํ™•์ธํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ์—ฐ๊ตฌ ๊ธฐ๊ฐ„์€ ์ข…๋Ÿ‰์„ธ๋กœ์˜ ์ „ํ™˜ ์š”๊ตฌ๊ฐ€ ๊ณต์‹์ ์œผ๋กœ ์ œ๊ธฐ๋˜์—ˆ๋˜ 2012๋…„๋ถ€ํ„ฐ ๋งฅ์ฃผ์˜ ์ข…๋Ÿ‰์„ธ ์ „ํ™˜์ด ํ™•์ •๋œ 2019๋…„๊นŒ์ง€๋กœ ํ•˜์˜€์œผ๋ฉฐ, ์ข…๋Ÿ‰์„ธ ์ „ํ™˜์— ๊ด€ํ•œ ์—ฐ๊ตฌ๋…ผ๋ฌธ, ๊ตญํšŒ ํšŒ์˜๋ก, ๋ณด๋„์ž๋ฃŒ, ์—ฐ๊ตฌ๋ณด๊ณ ์„œ ๋“ฑ์˜ ์ž๋ฃŒ๋ฅผ ์ˆ˜์ง‘ํ•˜๋Š” ๋‚ด์šฉ๋ถ„์„๋ฐฉ๋ฒ•์„ ์—ฐ๊ตฌ ๋ฐฉ๋ฒ•์œผ๋กœ ์ฑ„ํƒํ•˜์˜€๋‹ค. ๋ถ„์„ ๊ฒฐ๊ณผ ๋‘ ์‚ฌ๋ก€์— ์žˆ์–ด ์ฃผ์š”ํ•œ ๋ณ€ํ™”๊ฐ€ ์žˆ์—ˆ๋˜ ์š”์ธ์€ ์—ญ๋™์  ์™ธ์ ๋ณ€์ˆ˜์˜ ์ •์น˜์ฒด์ œ ํ†ต์น˜์—ฐํ•ฉ ๋ณ€ํ™”์˜€๋‹ค. ์ •์ฑ… ํ•˜์œ„์ฒด์ œ์ธ ๋งฅ์ฃผ ์ข…๊ฐ€์„ธ ์œ ์ง€ ์˜นํ˜ธ์—ฐํ•ฉ๊ณผ ์ •์ฑ…์ค‘๊ฐœ์ž ์˜ ๋ณ€ํ™”๊ฐ€ ์žˆ์—ˆ์ง€๋งŒ, ๋งฅ์ฃผ ์ข…๊ฐ€์„ธ ์œ ์ง€ ์˜นํ˜ธ์—ฐํ•ฉ๊ณผ ์ •์ฑ…์ค‘๊ฐœ์ž๋Š” ์ •์น˜์ฒด์ œ ํ†ต์น˜์—ฐํ•ฉ ๋ณ€ํ™” ์š”์ธ ์ค‘ ์ค‘์†Œ๊ธฐ์—… ์ง€์› ์ •์ฑ… ๊ธฐ์กฐ์˜ ๋ณ€ํ™”์— ๋”ฐ๋ผ, ์กฐ์„ธ ๋‹น๊ตญ์˜ ์ž…์žฅ์ด ๋ณ€ํ•œ ๊ฒƒ์œผ๋กœ, ์ •์น˜์ฒด์ œ ํ†ต์น˜์—ฐํ•ฉ ๋ณ€ํ™”๋กœ ์ธํ•ด ์ˆ˜๋ฐ˜๋˜๋Š” ๋ณ€ํ™”์˜€๊ธฐ ๋•Œ๋ฌธ์— ๊ฒฐ๋ก ์ ์œผ๋กœ ์ •์น˜์ฒด์ œ ํ†ต์น˜์—ฐํ•ฉ ๋ณ€ํ™”๊ฐ€ ๋‘ ์‚ฌ๋ก€์˜ ์ •์ฑ…์‚ฐ์ถœ ์ฐจ์ด์— ์˜ํ–ฅ์„ ๋ฏธ์นœ ๊ฒƒ์œผ๋กœ ๋ณผ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” 7๋…„์—ฌ ์‚ฌ์ด์— ๋‘ ์ฐจ๋ก€์— ๊ฑธ์ณ ์‹œ๋„๋œ ์œ ์‚ฌํ•œ ์ •์ฑ…์˜ ์‹คํŒจ ์‚ฌ๋ก€์™€ ์„ฑ๊ณต ์‚ฌ๋ก€๋ฅผ ๋‹ค๋ฃธ์œผ๋กœ์จ ์™ธ๋ถ€์š”์†Œ์˜ ํ˜ผ๋™ํšจ๊ณผ๋ฅผ ๋ฐฐ์ œํ•˜์˜€๋‹ค๋Š” ์ ๊ณผ ๊ฐ ์š”์ธ์— ๋Œ€ํ•ด์„œ ๊ฐ๊ด€์  ์ž๋ฃŒ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๋ถ„์„ํ•˜์˜€๋‹ค๋Š” ์ ์—์„œ ์˜์˜๊ฐ€ ์žˆ๋‹ค๊ณ  ๋ณธ๋‹ค. ๋™์ผํ•œ ์ •์ฑ…(๋งฅ์ฃผ์˜ ์ข…๋Ÿ‰์„ธ ์ „ํ™˜)์ด ์ƒ๋ฐ˜๋œ ๊ฒฐ๊ณผ๋กœ ๊ท€๊ฒฐ๋œ ๊ฒƒ์„ ๋Œ€๋น„์‹œํ‚ค๊ณ , ์ •์ฑ…์˜นํ˜ธ์—ฐํ•ฉ๋ชจํ˜• ์š”์ธ๋ณ„๋กœ ๊ฐ๊ด€์ ์ธ ์ž๋ฃŒ๋ฅผ ๊ทผ๊ฑฐ๋กœ ์ œ์‹œํ•˜์—ฌ ๋ณ€ํ™” ์œ ๋ฌด๋ฅผ ํ™•์ธํ•˜์˜€์œผ๋ฉฐ, ์ด๋ฅผ ํ†ตํ•œ ์ธ๊ณผ๊ด€๊ณ„ ์„ค๋ช…์— ์ดˆ์ ์„ ๋งž์ถ”์—ˆ๋‹ค๋Š” ์ ์—์„œ ๊ธฐ์กด ์—ฐ๊ตฌ์˜ ์ ‘๊ทผ ๋ฐฉ์‹๊ณผ ์ฐจ๋ณ„์„ฑ์„ ๋‘์—ˆ๋‹ค. ํ–ฅํ›„, ๋™์ผํ•œ ์ •์ฑ…์ด ์‹œ์ฐจ๋ฅผ ๋‘๊ณ  ์‹คํŒจํ•˜๊ฑฐ๋‚˜ ์„ฑ๊ณตํ•œ ์‚ฌ๋ก€๋ฅผ ์ •์ฑ…์˜นํ˜ธ์—ฐํ•ฉ๋ชจํ˜•์„ ์ ์šฉํ•˜์—ฌ ๋ถ„์„ํ•  ๋•Œ ์ด์™€ ๊ฐ™์€ ๋ฐฉ์‹์œผ๋กœ๋„ ์ ‘๊ทผํ•  ์ˆ˜ ์žˆ์Œ์„ ์ œ์‹œํ•˜์˜€๋‹ค๋Š” ์ ์—์„œ ์˜์˜๊ฐ€ ์žˆ๋‹ค๊ณ  ๋ณธ๋‹ค.This study analyzed the cases of the revision of the liquor tax act implemented in 2020 and the revision of the 2014 enforcement decree of the liquor tax act, which failed to change the specific tax on beer, by applying the Advocacy Coalition Framework. Among various variables in the Advocacy Coalition Framework, three main variables were Relatively Stable Parameters, External Events, and Policy subsystem. The comparative analysis was conducted on a case-by-case basis to confirm which variables resulted in differences in policy output. This research is from 2012, when the demand for conversion to a unit tax was officially raised, to 2019, when the conversion of a unit tax on beer was confirmed. And the content analysis method was adopted by collecting research papers, minutes of the National Assembly, press releases, and research reports. According to the analysis, the main factor that causes major changes in the two cases was Changes in systemic governing coalition of External Events. While the policy subsystem of "the Union for the Maintenance of an ad valorem tax" and "the Policy Broker" have also changed, Both "the Union for the Maintenance of an ad valorem tax" and "the Policy Broker" have changed in line with the adjustment in the policy stance of supporting small and medium-sized enterprises. It can be regarded as these changes of two factors are resulted from Changes in a systemic governing coalition. This study shows significance in that it excluded the confusion effects of external factors by dealing with similar policy failures and successes attempted twice in seven years and analyzed each factor based on objective data. It was different from the approach of the previous research in that the same policy (the Conversion to a unit tax on Beer) was prepared for the conflicting results, and the change was confirmed based on objective data by the factors of the Advocacy Coalition Framework, and the focus was on explaining the causal relationship. In the future, it can show the significance that the same policy, whether failed or successful with a time lag, can be applied to analyze using the Advocacy Coalition Framework.์ œ 1 ์žฅ ์„œ๋ก  1 ์ œ 1 ์ ˆ ์—ฐ๊ตฌ์˜ ๋ชฉ์  ๋ฐ ํ•„์š”์„ฑ 1 ์ œ 2 ์žฅ ์ด๋ก ์  ๋…ผ์˜ 3 ์ œ 1 ์ ˆ ์ •์ฑ…์˜นํ˜ธ์—ฐํ•ฉ๋ชจํ˜• 3 1. ์ •์ฑ…์˜นํ˜ธ์—ฐํ•ฉ๋ชจํ˜•์˜ ๊ฐœ๊ด€ 3 2. ์ •์ฑ…์˜นํ˜ธ์—ฐํ•ฉ๋ชจํ˜•์˜ ๊ตฌ์„ฑ์š”์†Œ 4 ์ œ 2 ์ ˆ ์ฃผ์„ธ๋ฒ• 7 1. ์šฐ๋ฆฌ๋‚˜๋ผ์˜ ์ฃผ๋ฅ˜ ๊ณผ์„ธ ์ฒด๊ณ„ 7 2. ์ฃผ๋ฅ˜์‹œ์žฅ์˜ ์ดํ•ด 9 3. ์ข…๊ฐ€์„ธ์™€ ์ข…๋Ÿ‰์„ธ 12 4. ์ข…๊ฐ€์„ธ ๋ฐ ์ข…๋Ÿ‰์„ธ์— ๋”ฐ๋ฅธ ์œ ๋ถˆ๋ฆฌ 17 5. ์ค‘์†Œ๊ธฐ์—… ์ •์ฑ… ๊ฐ•ํ™”์™€ ๋งฅ์ฃผ์˜ ์ข…๋Ÿ‰์„ธ ์ „ํ™˜์˜ ์—ฐ๊ด€์„ฑ 21 ์ œ 3 ์žฅ ์„ ํ–‰์—ฐ๊ตฌ์˜ ๊ฒ€ํ†  26 ์ œ 1 ์ ˆ ์ •์ฑ…์˜นํ˜ธ์—ฐํ•ฉ๋ชจํ˜• 26 ์ œ 2 ์ ˆ ์ฃผ์„ธ๋ฒ• ๊ฐœ์ • 29 ์ œ 4 ์žฅ ์—ฐ๊ตฌ ์„ค๊ณ„์™€ ์‚ฌ๋ก€ ์†Œ๊ฐœ 32 ์ œ 1 ์ ˆ ์—ฐ๊ตฌ์„ค๊ณ„ 32 1. ์—ฐ๊ตฌ๋ฌธ์ œ 32 2. ์ž๋ฃŒ์ˆ˜์ง‘ 33 3. ์—ฐ๊ตฌ ๋ฐฉ๋ฒ• ๋ฐ ๋ถ„์„ํ‹€ 33 ์ œ 2 ์ ˆ ์‚ฌ๋ก€์†Œ๊ฐœ 35 1. ๋งฅ์ฃผ์˜ ์ข…๋Ÿ‰์„ธ ์ „ํ™˜ ์‚ฌ๋ก€ ์†Œ๊ฐœ 35 2. 2014๋…„ ์ฃผ์„ธ๋ฒ• ์‹œํ–‰๋ น ๊ฐœ์ • vs 2020๋…„ ์ฃผ์„ธ๋ฒ• ๊ฐœ์ • 38 ์ œ 3 ์ ˆ ์ •์ฑ…์˜นํ˜ธ์—ฐํ•ฉ๋ชจํ˜• ๊ตฌ์„ฑ์š”์†Œ ์„ค์ • 48 1. ์•ˆ์ •์  ์™ธ์ ๋ณ€์ˆ˜ 48 2. ์—ญ๋™์  ์™ธ์ ๋ณ€์ˆ˜ 61 3. ์ •์ฑ…ํ•˜์œ„์ฒด์ œ 83 4. ์‚ฌ๋ก€๋ณ„ ๋น„๊ต ์š”์•ฝ 88 ์ œ 5์žฅ ๊ฒฐ๋ก  98 ์ œ 1 ์ ˆ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ 98 ์ œ 2 ์ ˆ ์—ฐ๊ตฌ์˜ ์˜์˜ 99 ์ œ 3 ์ ˆ ์—ฐ๊ตฌ์˜ ํ•œ๊ณ„ 100 ์ฐธ๊ณ ๋ฌธํ—Œ 101 Abstract 111Maste

    Improvement of propagation property of THz TEM-mode using tapered parallel plate waveguide

    Get PDF
    This paper an experimental study of a tapered parallel-plate waveguide(TPPWG) to improve THz coupling to the plate separation gap. Propagating THz waves has a small absorptance and no group velocity dispersion in PPWG 100um gap. However about 30% reflection loss from si lens and has loss to the structure problem. This loss induces a low coupling efficient. To prevent the reflection loss and to concentrate the THz beam on the air gap, of the plate separation the structure of the input side of the PPWG was changed a tapered structure. The five different slop angles of the tapered part-i.e., 20หš,15หš,10หš,5หš, and 3หš were used to get the THz pulses. As the slop angle of the TPPWG decreased, the amplitudes of the THz pulses were enhanced. Had the slop angle been smaller than 3หš, the measured THz pulse would have been enhanced more. When the input THz beam was incidence to one-sided TPPWG has a reflection on boundary surface. To reduce the reflection, boundary surface made a changing round. When Compare The round TPPWG with non round TPPWG, increased by 15% at the peak to peak and was enhanced by 13% at the 1THz frequency. And, the input-, output- side of the PPWG was changed a two-sided tapered structure. The peak to peak THz amplitude of the two-sided TPPWG improved by 138% compare with the PPWG. also improved by 38% compare with the one-sided TPPWG. The PPWG attenuation loss is considered, the two-sided TPPWG, the on-sided TPPWG and the PPWG had a respectively 56%, 42%, and 27% coupling. Also, Use the PPWG and TPPWG, coupling improvement of TSP was generated on aluminum sheet. The improvement of TSP coupling the aluminum surface was done by the vertical-, horizontal-, and check grooves on the aluminum sheet with 50um thickness. The vertical and check grooves on the metal surface was 100% improved coupling efficient than that of the horizontal and smooth surfaces. Also, 0.5mm groove period had 100% improved coupling efficient compare with the 1.0mm groove period. Although the amplitude of spectra to the vertical and check grooves was improved, the spectrum bandwidth was reduced compare with the horizontal and smooth surface.Abstract ์ œ 1 ์žฅ ์„œ ๋ก  1. 1 ํ…Œ๋ผํ—ค๋ฅด์ธ ํŒŒ 1. 2 ๊ฒฝ์‚ฌ์ง„ ํ‰ํ–‰ ๋„ํŒŒ๋กœ(TPPWG) ์ œ 2 ์žฅ ๋„ํŒŒ๋กœ ๊ตฌ์กฐ ๋ฐ ์‹คํ—˜ ์žฅ์น˜๋„ 2. 1 PPWG ๋ฐ TPPWG ๊ตฌ์กฐ 2. 2 ์‹คํ—˜์žฅ์น˜๋„ ์ œ 3 ์žฅ ๊ฒฝ์‚ฌ์ง„ ๋„ํŒŒ๋กœ์˜ ์ „ํŒŒํŠน์„ฑ 3. 1 ํ‰ํ–‰ํŒ ๋„ํŒŒ๋กœ ์ „ํŒŒ 3. 1. 1 TM0(TEM) ๋‹จ์ผ๋ชจ๋“œ 3. 1. 2 ํ‰ํ–‰ํŒ ๋„ํŒŒ๋กœ ์ „ํŒŒ์†์‹ค 3. 2 ๊ฒฝ์‚ฌ๊ฐ์— ๋”ฐ๋ฅธ one-sided TPPWG ์ „ํŒŒํŠน์„ฑ 3. 3 ๊ฒฝ๊ณ„๋ฉด์ด ๋‘ฅ๊ทผ one-sided TPPWG 3. 4 Two-sided TPPWG ์ „ํŒŒํŠน์„ฑ 3. 4. 1 Two-sided TPPWG ๊ตฌ์กฐ 3. 4. 2 ์ž…์‚ฌ ๋ฐฉํ–ฅ์— ๋”ฐ๋ฅธ one-sided TPPWG ์ „ํŒŒ 3. 4. 3 Two-sided TPPWG ์ „ํŒŒ ์ œ 4 ์žฅ THz ํ‘œ๋ฉด ํ”Œ๋ผ์ฆˆ๋ชฌ 4. 1 ํ‘œ๋ฉด ํ”Œ๋ผ์ฆˆ๋ชฌ(Surface Plasmon) 4. 2 ์‹คํ—˜์žฅ์น˜ ๋ฐ ๊ตฌ์กฐ 4. 3 PPWG๋ฅผ ์ด์šฉํ•œ THz SP์˜ ๊ฒฐํ•ฉ 4. 4 ๊ธˆ์† ํ‘œ๋ฉด ๊ตฌ์กฐ์— ๋”ฐ๋ฅธ THz SP์˜ ๊ฒฐํ•ฉ ํŠน์ง• 4. 4. 1 Vertical Groove 4. 4. 2 Horizontal Groove 4. 4. 3 Check Groove ์ œ 5 ์žฅ ๊ฒฐ ๋ก  ์ฐธ ๊ณ  ๋ฌธ

    SEPARATION CONTROL USING SYNTHETIC JET ON NACA23012 AT HIGH ANGLE OF ATTACK

    Get PDF
    Flow control has been performed using synthetic jet on NACA23012. In order to improve aerodynamic performance, synthetic jet is located near separation point on airfoil with leading edge droop and plain flap. The flow control using synthetic jet shows that stall characteristics and control surface performance can be improved through resizing separation vortices. Stall is delayed and stall characteristics are improved when synthetic jet is applied from separation region of leading edge droop. Control surface effectiveness is increased and lift is increased when synthetic jet applied at the flap leading edge region. The results show that aerodynamic characteristics can be improved through leading edge droop with synthetic jet at near separation and plain flap with synthetic jet at the flap leading edge. The combination of synthetic jet and simple high lift device is as good as fowler flap system.OAIID:oai:osos.snu.ac.kr:snu2005-01/104/0000004648/21SEQ:21PERF_CD:SNU2005-01EVAL_ITEM_CD:104USER_ID:0000004648ADJUST_YN:NEMP_ID:A001138DEPT_CD:446CITE_RATE:0FILENAME:๊ณ ๋ฐ›์Œ๊ฐ์˜_NACA23012์ตํ˜•์—์„œ_synthetic_jet์„_์ด์šฉํ•œ_๋ฐ•๋ฆฌ_์ œ์–ด_์—ฐ๊ตฌ.pdfDEPT_NM:๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€EMAIL:[email protected]:

    Flow Control of Smart UAV Airfoil Using Synthetic Jet Part 2 : Flow control in Transition Mode Using Synthetic Jet

    Get PDF
    In order to reduce the download around the Smart UAV(SUAV) at Transition mode, flow control using synthetic jet has been performed. Many of the complex tilt rotor flow features are captured including the leading and trailing edge separation, and the large region of separated flow beneath the wing. Based on the results of part 1 of the present work, synthetic jet is located at 0.01c, 0.95cflap and it is operated with the non-dimensional frequency of 0.5, 5 to control the leading edge and trailing edge separation. Consequently, download is substantially reduced compared to with no control case at transition mode using leading edge jet only. The present results show that the overall flight performance and stability of the SUAV can be remarkably improved by applying the active flow control strategy based on synthetic jet.์Šค๋งˆํŠธ ๋ฌด์ธ๊ธฐ ์ตํ˜• ์ฃผ์œ„์˜ ์œ ๋™ ๊ตฌ์กฐ๋ฅผ ํŒŒ์•…ํ•˜๊ณ  ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ synthetic jet์„ ์ด์šฉํ•˜์—ฌ ์ฒœ์ด ๋น„ํ–‰ ๋ชจ๋“œ์—์„œ์˜ ์ˆ˜์ตํ•˜์ค‘ ๊ฐ์†Œ ์—ฌ๋ถ€๋ฅผ ํŒŒ์•…ํ•˜์˜€๋‹ค. ์Šค๋งˆํŠธ ๋ฌด์ธ๊ธฐ์˜ ์‹ค์ œ ๋น„ํ–‰ ๋ชจ๋“œ์—์„œ์˜ ์œ ๋™ ๊ตฌ์กฐ๋ฅผ ๋ถ„์„ํ•˜์—ฌ ์•ž์ „ ๋ฐ ๋’ท์ „์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์™€๋ฅ˜์— ์˜ํ•ด์„œ ์ˆ˜์ตํ•˜์ค‘์ด ํฌ๊ฒŒ ์ฆ๊ฐ€ํ•จ์„ ๋ฐํ˜”๋‹ค. ์ด์— ์•ž์ „๊ณผ ๋’ท์ „์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์œ ๋™์˜ ๋ฐ•๋ฆฌ๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ์ œ์–ดํ•˜๊ธฐ ์œ„ํ•˜์—ฌ Part 1์˜ ๊ฒฐ๊ณผ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ 0.01c, 0.95cflap ์ง€์ ์— jet์„ ์œ„์น˜์‹œํ‚ค๊ณ  ๊ฐ๊ฐ ๋ฌด์ฐจ์› ์ฃผํŒŒ์ˆ˜(F+)๋ฅผ 0.5, 5๋กœ ์ž‘๋™์‹œ์ผœ ๊ทธ์— ๋”ฐ๋ฅธ ์œ ๋™๊ตฌ์กฐ ๋ณ€ํ™”์™€ ํ•ญ๋ ฅ ๊ฐ์†Œ์œจ์„ ์•Œ์•„๋ณด์•˜๋‹ค. ๊ทธ ๊ฒฐ๊ณผ ์ฒœ์ด ๋น„ํ–‰ ๋ชจ๋“œ์—์„œ์˜ ์œ ๋™ ์ œ์–ด๋ฅผ ์œ„ํ•ด์„œ๋Š” ์•ž์ „์— ์œ„์น˜ํ•œ jet๋งŒ์„ ์ž‘๋™์‹œํ‚ฌ ๊ฒฝ์šฐ ๊ฐ€์žฅ ํšจ๊ณผ์ ์œผ๋กœ ์ˆ˜์ตํ•˜์ค‘์„ ๊ฐ์†Œ์‹œํ‚ฌ ์ˆ˜ ์žˆ์Œ์„ ๋ฐํ˜”๋‹ค. ์ด์— ์ •์ง€ ๋น„ํ–‰ ๋ชจ๋“œ์—์„œ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์ฒœ์ด ๋น„ํ–‰ ๋ชจ๋“œ์—์„œ synthetic jet์„ ์ด์šฉํ•˜์—ฌ ์œ ๋™์„ ์ œ์–ดํ•œ๋‹ค๋ฉด ์Šค๋งˆํŠธ์ „ ๋น„ํ–‰ ๋ชจ๋“œ์—์„œ์˜ ๋น„ํ–‰์„ฑ๋Šฅ๊ณผ ์•ˆ์ •์„ฑ์„ ๋™์‹œ์— ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋‹ค.๋ณธ ์—ฐ๊ตฌ๋Š” ์ง€์‹๊ฒฝ์ œ๋ถ€ ์ง€์›์œผ๋กœ ์ˆ˜ํ–‰ํ•˜๋Š” 21์„ธ๊ธฐ ํ”„๋ก ํ‹ฐ์–ด ๊ธฐ์ˆ ๊ฐœ๋ฐœ์‚ฌ์—…(์Šค๋งˆํŠธ๋ฌด์ธ๊ธฐ๊ธฐ์ˆ ๊ฐœ๋ฐœ) ๋ฐ ๋ฐฉ์œ„์‚ฌ์—…์ฒญ๊ณผ ๊ตญ๋ฐฉ๊ณผํ•™์—ฐ๊ตฌ์†Œ์˜ ์ง€์› (๊ณ„์•ฝ๋ฒˆํ˜ธ UD0700 41AD)๊ณผ ํ•œ๊ตญ๊ณผํ•™๊ธฐ์ˆ ์ •๋ณด์—ฐ๊ตฌ์› ์Šˆํผ์ปดํ“จํŒ…์„ผํ„ฐ (KSC-2007- S00-1016), BK 21์‚ฌ์—…์˜ ์ง€์›์„ ํ†ตํ•ด ์ˆ˜ํ–‰๋˜์—ˆ์Šต๋‹ˆ๋‹ค.OAIID:oai:osos.snu.ac.kr:snu2009-01/102/0000004648/11SEQ:11PERF_CD:SNU2009-01EVAL_ITEM_CD:102USER_ID:0000004648ADJUST_YN:NEMP_ID:A001138DEPT_CD:446CITE_RATE:0FILENAME:Synthetic jet์„ ์ด์šฉํ•œ ์Šค๋งˆํŠธ ๋ฌด์ธ๊ธฐ(SUAV) ์œ ๋™์ œ์–ด Part 2.pdfDEPT_NM:๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€EMAIL:[email protected]_YN:NCONFIRM:
    • โ€ฆ
    corecore