63 research outputs found

    Faint HI 21-cm emission line wings at forbidden-velocities

    No full text
    Thesis (master`s)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์ง€๊ตฌํ™˜๊ฒฝ๊ณผํ•™๋ถ€ ์ฒœ๋ฌธํ•™์ „๊ณต,2004.Maste

    Ritodrine ์‚ฌ์šฉ๊ธฐ๊ฐ„์— ๋”ฐ๋ฅธ ์กฐ์‚ฐ์•„ ํ˜ˆ๋‹น๋†๋„์˜ ์ฐจ์ด

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) --์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์˜ํ•™๊ณผ (์‚ฐ๋ถ€์ธ๊ณผํ•™์ „๊ณต),2009.2.Maste

    ์‹๋ฌผ์„ฑ์˜ ์กฐํ˜•์  ํ‘œํ˜„ ์—ฐ๊ตฌ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๋™์–‘ํ™”๊ณผ, 2011.2. ๊น€๋ณ‘์ข….Maste

    ์šฐ๋ฆฌ์€ํ•˜์˜ ๊ณ ์†๋„ ์ค‘์„ฑ์ˆ˜์†Œ๊ธฐ์ฒด์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    No full text
    Thesis(doctors) --์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์ง€๊ตฌํ™˜๊ฒฝ๊ณผํ•™๋ถ€,2008.8.Docto

    4ฮฑGTase ์ฒ˜๋ฆฌ ์Œ€ ์ „๋ถ„์„ ์ด์šฉํ•œ ์ปคํ๋ฏผ ํฌ์ ‘ ํ•„๋“œํ•˜์ด๋“œ๋กœ์ ค์˜ ์•ˆ์ •์„ฑ์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๋†์—…์ƒ๋ช…๊ณผํ•™๋Œ€ํ•™ ๋ฐ”์ด์˜ค์‹œ์Šคํ…œยท์†Œ์žฌํ•™๋ถ€(๋ฐ”์ด์˜ค์‹œ์Šคํ…œ๊ณตํ•™), 2020. 8. ๊น€์šฉ๋…ธ.Curcumin is a primary natural polyphenol compound with antioxidant, anti-inflammatory, and anticancer properties. However, the application of curcumin is severely limited due to its low water solubility (11ng/mL) and bioavailability, and chemical instability to UV light and high temperature. In this study, filled hydrogels (1GS-FH, 24GS-FH, and 96GS-FH) by adding 4ฮฑGTase-treated rice starch (GS) prepared by treating rice starch with 4-ฮฑ-glucanotransferase (4ฮฑGTase) for 1 h (1GS), 24 h (24GS), and 96 h (96GS) in aqueous phase of a curcumin-loaded emulsion. Emulsion (without adding any starch gel, EM) and native rice starch-based filled hydrogel (RS-FH) were prepared as control groups. The physicochemical properties of GS were analyzed first. GS showed decrease of molecular weight and a more gradual and flat chain length distributions in high-performance size exclusion chromatography (HPSEC) and high-performance anion exchange chromatography (HPAEC) analysis. In the texture profile analysis test, hardness of GS-FH decreased as enzyme treatment time increased. Moreover, the curcumin protection effects of FH system were evaluated through UV stability (for 7 h), heat stability (for 24 h) and simulated gastrointestinal study in comparison with RS-FH and EM. The UV stabilities and curcumin retention after in vitro digestion of the FH samples were more improved than EM samples. RS-FH indicated 2.28-fold improved UV stability than EM due to the highest viscosity of RS. 1GS-FH, 24GS, and 96GS-FH increased curcumin retention by 2.31-, 2.45-, and 2.60-fold, respectively, and the microstructure of 96GS-FH using a confocal laser microscopy remained stable even after the stomach phase. For bioavailability measurements, the curcumin concentrations in all samples were extremely low, so accurate measurements could not be possible. Meanwhile, UV and heat stabilities of FH after freeze-drying (FH') was less effective than EM after freeze drying (EM'). However, FH' (especially GS-FH') still increased curcumin retention after in vitro digestion system. These effects may be attributed to the molecular structure of GS with smaller cyclic glucan and amylopectin cluster by modifying the molecular length and molecular weight of amylose and amylopectin. The encapsulation of lipids within the GS hydrogel particles served advantageously to protect and deliver the curcumin component, suggesting that GS-FH can be applied to gel-type food products that improve the chemical stability of curcumin.์ปคํ๋ฏผ (Curcumin)์€ curcuma longa์˜ ๋ฟŒ๋ฆฌ์—์„œ ์œ ๋ž˜ํ•˜๋Š” ์ฒœ์—ฐ ํด๋ฆฌํŽ˜๋†€ ํ™”ํ•ฉ๋ฌผ๋กœ ํ•ญ์•”, ํ•ญ์—ผ ๋ฐ ํ•ญ์‚ฐํ™” ํšจ๊ณผ ๋“ฑ์˜ ์ƒ๋ฆฌํ™œ์„ฑ์„ ์ง€๋‹ˆ๊ณ  ์žˆ์–ด ์‹ํ’ˆ, ์ œ์•ฝ ๋“ฑ ์—ฌ๋Ÿฌ ๋ถ„์•ผ์—์„œ ๋„๋ฆฌ ์“ฐ์ด๊ณ  ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ๋ฌผ์— ๋Œ€ํ•œ ์šฉํ•ด๋„๊ฐ€ ๋งค์šฐ ๋‚ฎ๊ณ  (์•ฝ 11ng/ml), ์ž์™ธ์„  ๋ฐ ์˜จ๋„ ๋“ฑ์˜ ์™ธ๋ถ€ ํ™˜๊ฒฝ์— ์˜ํ•ด ์‰ฝ๊ฒŒ ๋ถ„ํ•ด๋˜๊ธฐ ๋•Œ๋ฌธ์— ๋‚ฎ์€ ์ƒ์ฒด์ด์šฉ๋ฅ ์„ ๊ฐ€์ง„๋‹ค. ๊ทธ๋Ÿฌ๋ฏ€๋กœ ์‹ํ’ˆ์‚ฐ์—…์—์„œ ์ปคํ๋ฏผ์„ ํ™œ์šฉํ•จ์— ์žˆ์–ด ์ œ์•ฝ์ด ๋œ๋‹ค. ์ด๋Ÿฌํ•œ ์ปคํ๋ฏผ์˜ ๋‚ฎ์€ ์šฉํ•ด๋„์™€ ํ™”ํ•™์  ๋ถˆ์•ˆ์ •์„ฑ์„ ๊ฐœ์„ ์‹œํ‚ค๊ธฐ ์œ„ํ•ด ๋‚˜๋…ธ์—๋ฉ€์ ผ, ๋‚˜๋…ธ์ ค ๋“ฑ์˜ ์‹œ์Šคํ…œ์„ ํ†ตํ•ด ์ปคํ๋ฏผ์„ ์บก์Šํ™”ํ•˜๋Š” ์—ฐ๊ตฌ๋“ค์ด ์ง„ํ–‰๋˜์–ด์™”๋‹ค. ํŠนํžˆ ์ˆ˜์ƒ์ธต ๋‚ด์— ์œ ํ™”์ œ๋กœ ๋‘˜๋Ÿฌ์‹ธ์ธ ์œ ์ƒ์ธต์œผ๋กœ ๊ตฌ์„ฑ๋œ ์ด์ค‘์ธต์˜ ์—๋ฉ€์ ผ ์‹œ์Šคํ…œ์€ ์ปคํ๋ฏผ์ด ํŠน์ •ํ•œ ์™ธ๋ถ€ ์ž๊ทน์— ๋”ฐ๋ผ ์ ์ ˆํ•œ ์‹œ์ ์—์„œ ๋ฐฉ์ถœ๋  ์ˆ˜ ์žˆ๋„๋ก ํ•˜์—ฌ ์ƒ์ฒด์ด์šฉ๋ฅ ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•œ ๋ฐฉ์•ˆ์œผ๋กœ ๋„๋ฆฌ ์—ฐ๊ตฌ๋˜์—ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, ์ด๋Ÿฌํ•œ O/W ์—๋ฉ€์ ผ์€ ์—ด์— ๋งค์šฐ ๋ถˆ์•ˆ์ •ํ•˜๋ฉฐ, ํŠน์ • ํ™˜๊ฒฝ์— ๋…ธ์ถœ๋˜์—ˆ์„ ๋•Œ ์‹œ๊ฐ„์— ๋”ฐ๋ผ ๋ถ„ํ•ด๋˜๊ธฐ ์‰ฌ์šด ๋‹จ์ ์„ ์ง€๋‹Œ๋‹ค. ๊ทธ๋Ÿฌ๋ฏ€๋กœ ์ตœ๊ทผ์—๋Š” O/W ์—๋ฉ€์ ผ์˜ ์ ๋„๋ฅผ ๋†’์ด๊ณ  ์ ค๋„คํŠธ์›Œํฌ๋ฅผ ํ˜•์„ฑํ•˜์—ฌ ์—๋ฉ€์ ผ์˜ ์•ˆ์ •์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•˜์—ฌ ๋‹ค๋‹น๋ฅ˜๋ฅผ ์—๋ฉ€์ ผ์˜ ์ˆ˜์ƒ์ธต์— ์ฒจ๊ฐ€ํ•˜๋Š” ์—ฐ๊ตฌ๋“ค์ด ์ง„ํ–‰๋˜๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ํ˜•ํƒœ์˜ ์—๋ฉ€์ ผ์„ O/W1/W2 ์—๋ฉ€์ ผ์ด๋ผ๊ณ  ํ•˜๋ฉฐ ์ˆ˜์ƒ์ธต์— ๋ถ„์‚ฐ๋œ ํ•˜์ด๋“œ๋กœ์ ค ์ž…์ž๋“ค์ด ์ง€๋ฐฉ๊ตฌ๋ฅผ ๋‘˜๋Ÿฌ์‹ธ๊ณ  ์žˆ๋Š” ํ˜•ํƒœ๋ฅผ ์ผ์ปซ๋Š”๋‹ค. ๋”ฐ๋ผ์„œ ๋ฌด๋…์„ฑ, ์ƒ์ฒด์ ํ•ฉ์„ฑ์„ ์ง€๋‹Œ ๋‹ค๋‹น๋ฅ˜ ๊ธฐ๋ฐ˜ ํ•˜์ด๋“œ๋กœ์ ค์€ 3์ฐจ์› ๋„คํŠธ์›Œํฌ ๊ตฌ์กฐ๋ฅผ ํ˜•์„ฑํ•˜์—ฌ ์ƒ๋ฆฌํ™œ์„ฑํ™”ํ•ฉ๋ฌผ์˜ ์šด๋ฐ˜์ฒด ์—ญํ• ๋กœ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ๋‹ค. ์ˆ˜์ƒ์ธต์— ์ฒจ๊ฐ€๋  ์ˆ˜ ์žˆ๋Š” ๋‹ค๋‹น๋ฅ˜์˜ ํ•œ ์ข…๋ฅ˜๋กœ ์Œ€ ์ „๋ถ„์„ ๋“ค ์ˆ˜ ์žˆ๋Š”๋ฐ, ์ด ์Œ€ ์ „๋ถ„์— Thermus Aquaticus 4-a-glucanotransferase (4aGTase) ์ฒ˜๋ฆฌ๋ฅผ ํ•˜์—ฌ ๋ณ€ํ™”๋œ ๋ฌผ๋ฆฌํ™”ํ•™์  ํŠน์„ฑ์„ ์ง€๋‹Œ ํšจ์†Œ์ฒ˜๋ฆฌ ์ „๋ถ„ ๊ธฐ๋ฐ˜ ํ•„๋“œํ•˜์ด๋“œ๋กœ์ ค์— ๊ด€ํ•œ ์—ฐ๊ตฌ๊ฐ€ ์•„์ง ์ง„ํ–‰๋˜์ง€ ์•Š์•˜๋‹ค. ๋”ฐ๋ผ์„œ, ๋ณธ ์—ฐ๊ตฌ๋Š” 4aGTase ์ฒ˜๋ฆฌ ์Œ€ ์ „๋ถ„์„ ์ปคํ๋ฏผ์ด ํฌ์ ‘๋œ ์—๋ฉ€์ ผ์˜ ์ˆ˜์ƒ์ธต์— ์ฒจ๊ฐ€ํ•˜์—ฌ ์ปคํ๋ฏผ์˜ ์•ˆ์ •์„ฑ๊ณผ ์ƒ์ฒด์ด์šฉ๋ฅ  ํ–ฅ์ƒ์„ ์ฆ๋Œ€์‹œํ‚ค๋Š” ๊ฒƒ์„ ๋ชฉ์ ์œผ๋กœ ํ•œ๋‹ค. ์Œ€ ์ „๋ถ„์ด ์ฒจ๊ฐ€๋˜์ง€ ์•Š์€ ์—๋ฉ€์ ผ๊ณผ ๋น„ํšจ์†Œ์ฒ˜๋ฆฌ ์Œ€ ์ „๋ถ„ ๊ธฐ๋ฐ˜ ํ•˜์ด๋“œ๋กœ์ ค์„ ๋น„๊ต๊ตฐ์œผ๋กœ ์ •ํ•˜์˜€๋‹ค. ๋จผ์ €, 4aGTase ์ฒ˜๋ฆฌ ์ „๋ถ„์˜ ๋‹ค์–‘ํ•œ ๋ฌผ๋ฆฌํ™”ํ•™์  ํŠน์„ฑ์„ ๋ถ„์„ํ•˜์˜€๋‹ค. ์Œ€ ์ „๋ถ„์„ 1์‹œ๊ฐ„, 24์‹œ๊ฐ„ ๋ฐ 96์‹œ๊ฐ„ ๋™์•ˆ ๊ฐ๊ฐ ์ฒ˜๋ฆฌํ•œ ํ›„์— ํ‰๊ท  ๋ถ„์ž๋Ÿ‰ ๋ถ„ํฌ (HPSEC), ์‚ฌ์Šฌ ๊ธธ์ด ๋ถ„ํฌ (HPAEC), Rheological properties, ์ ๋„ ํŠน์„ฑ, Granular morphology (SEM), Starch crystallinity (XRD), ๊ทธ๋ฆฌ๊ณ  Iodine absorption capacity์„ ๋ถ„์„ํ•˜์˜€๋‹ค. ํ‰๊ท  ๋ถ„์ž๋Ÿ‰ ๋ถ„ํฌ๋Š” ํšจ์†Œ์ฒ˜๋ฆฌ์‹œ๊ฐ„์ด ๊ธธ์–ด์งˆ์ˆ˜๋ก ๊ทธ ๊ฐ’์ด ์ž‘์•„์กŒ์œผ๋ฉฐ 96์‹œ๊ฐ„ ์ฒ˜๋ฆฌ ์‹œ์—” fraction โ…ก์—์„œ ๊ฐ€์žฅ ๋†’์€ ๋ถ„์ž๋Ÿ‰์˜ ํ”ผํฌ๊ฐ€ 2.12ร— 105 g/mol ์—์„œ 2.28 ร— 104 g/mol๋กœ ์ด๋™ํ•˜์˜€๊ณ  fractionโ… ์€ ๋Œ€์ฒด๋กœ ๊ฐ์†Œํ•˜์˜€๋‹ค. ์ด๋Š” 4aGTase์˜ dispropornation reaction ์ž‘์šฉ์— ๊ธฐ์ธํ•œ ๊ฒƒ์œผ๋กœ ์ƒ๊ฐ๋œ๋‹ค. ์‚ฌ์Šฌ ๊ธธ์ด ๋ถ„ํฌ๋Š” ํšจ์†Œ ์ฒ˜๋ฆฌ ์‹œ๊ฐ„์ด ๊ธธ์–ด์ง์— ๋”ฐ๋ผ B2์™€ B3 ์‚ฌ์Šฌ์˜ ๋น„์œจ์ด ๋†’์•„์กŒ๋‹ค. ๋˜ํ•œ steady-state flow ๋ฐฉ๋ฒ•์— ๋”ฐ๋ฅธ ์ ๋„ ํŠน์„ฑ์—์„œ ํšจ์†Œ์ฒ˜๋ฆฌ์ „๋ถ„์€ ๋น„ํšจ์†Œ์ฒ˜๋ฆฌ์ „๋ถ„์— ๋น„ํ•ด ํšจ์†Œ ์ฒ˜๋ฆฌ ์‹œ๊ฐ„์— ๋”ฐ๋ผ ์ ๋„๊ฐ€ ํ˜„์ €ํ•˜๊ฒŒ ๋‚ฎ์•˜์œผ๋ฉฐ, ํšจ์†Œ์ฒ˜๋ฆฌ์ „๋ถ„ ๋ชจ๋‘ V ํƒ€์ž…์˜ XRD peak๋ฅผ ๋‚˜ํƒ€๋ƒˆ๋‹ค. ์ปคํ๋ฏผ์ด ํฌ์ ‘๋œ ์—๋ฉ€์ ผ์— ์ „๋ถ„์„ ์ฒจ๊ฐ€ํ•˜์—ฌ ์ œ์กฐํ•œ ํ•„๋“œํ•˜์ด๋“œ๋กœ์ ค์˜ ์ ค ํŠน์„ฑ์„ ๋ถ„์„ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ TPA๋ฅผ ์ธก์ •ํ•ด๋ณธ ๊ฒฐ๊ณผ, ํšจ์†Œ์ฒ˜๋ฆฌ์Œ€์ „๋ถ„ ๊ธฐ๋ฐ˜ ํ•„๋“œํ•˜์ด๋“œ์ ค์˜ hardness๋Š” ๋น„ ํšจ์†Œ์ฒ˜๋ฆฌ์Œ€์ „๋ถ„ ๊ธฐ๋ฐ˜ ํ•„๋“œํ•˜์ด๋“œ์ ค๋ณด๋‹ค ๋‚ฎ์•˜์œผ๋ฉฐ ํšจ์†Œ์ฒ˜๋ฆฌ์‹œ๊ฐ„๊ณผ ๋น„๋ก€ํ•˜์—ฌ ๊ฐ์†Œํ•˜์˜€๋‹ค. ํšจ์†Œ์ฒ˜๋ฆฌ ์Œ€ ์ „๋ถ„ ๊ธฐ๋ฐ˜ ํ•„๋“œํ•˜์ด๋“œ๋กœ์ ค์˜ ์ปคํ๋ฏผ ๋ณดํ˜ธํšจ๊ณผ๋ฅผ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์—ด, UV ์•ˆ์ •์„ฑ์„ ์ธก์ •ํ•˜์˜€์œผ๋ฉฐ in vitro ์†Œํ™”์‹œ์Šคํ…œ์„ ํ™œ์šฉํ•˜์—ฌ ์†Œํ™”๊ณผ์ •์„ ๊ฑฐ์นœ ํ›„์˜ ์ปคํ๋ฏผ ๋ณด์œ ๋Ÿ‰๊ณผ ์ƒ์ฒด์ด์šฉ๋ฅ ์„ ํ™•์ธํ–ˆ๋‹ค. ์—ด ์•ˆ์ •์„ฑ์—์„œ๋Š” 24์‹œ๊ฐ„ ๊ฐ€์—ด ํ›„ ์ „๋ถ„์ด ์ฒจ๊ฐ€๋˜์ง€ ์•Š์€ ์—๋ฉ€์ ผ์ด 17.72% ๋กœ ๊ฐ€์žฅ ๋†’์€ ์—ด ์•ˆ์ •์„ฑ์„ ๋‚˜ํƒ€๋ƒˆ๋‹ค. ๊ฐ€์—ด ์‹œ์ž‘ ํ›„ 3์‹œ๊ฐ„๊นŒ์ง€์˜ ์—ด ์•ˆ์ •์„ฑ ์ถ”์ด๋ฅผ ๋น„๊ตํ•˜๋ฉด, ๋น„ํšจ์†Œ์ฒ˜๋ฆฌ ์Œ€ ์ „๋ถ„ ๊ธฐ๋ฐ˜ ํ•„๋“œํ•˜์ด๋“œ๋กœ์ ค์˜ ์—ด ์•ˆ์ •์„ฑ์€ ์ฒ˜์Œ 10๋ถ„ ์ด๋‚ด์— ๊ธ‰๊ฒฉํžˆ ๊ฐ์†Œํ–ˆ๊ณ  30๋ถ„ ํ›„์— ์•ฝ 5.68% ์ •๋„์˜ ์ž”๋ฅ˜๋Ÿ‰์„ ๊ฐ€์กŒ๋‹ค. ์ด์— ๋ฐ˜ํ•ด ํšจ์†Œ์ฒ˜๋ฆฌ์Œ€์ „๋ถ„ ๊ธฐ๋ฐ˜ ํ•„๋“œํ•˜์ด๋“œ๋กœ์ ค์€ ๊ฐ€์—ด 30๋ถ„ ํ›„์— ์•ฝ 17.27%์˜ ์ž”๋ฅ˜๋Ÿ‰์„ ๋ณด์˜€๋Š”๋ฐ, ์ด๋Š” ์•ž์„  ๋น„ํšจ์†Œ์ฒ˜๋ฆฌ ์Œ€ ์ „๋ถ„ ๊ธฐ๋ฐ˜ ํ•„๋“œํ•˜์ด๋“œ๋กœ์ ค๋ณด๋‹ค 3.04๋ฐฐ ๋†’์€ ์ปคํ๋ฏผ ์—ด ์•ˆ์ •์„ฑ์„ ๋ณด์˜€๋‹ค. ํ•„๋“œํ•˜์ด๋“œ๋กœ์ ค์˜ UV์•ˆ์ •์„ฑ์€ ์—๋ฉ€์ ผ ๋Œ€๋น„ ์ตœ๋Œ€ 2.28๋ฐฐ ํ–ฅ์ƒ๋˜์—ˆ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ ํšจ์†Œ์ฒ˜๋ฆฌ์Œ€์ „๋ถ„ ๊ธฐ๋ฐ˜ ํ•„๋“œํ•˜์ด๋“œ๋กœ์ ค์˜ in vitro ์†Œํ™”์‹œ์Šคํ…œ์„ ๊ฑฐ์นœ ํ›„์˜ ์ปคํ๋ฏผ ์ž”์กด๋Ÿ‰์€ ๊ฐ๊ฐ 80.2%, 85.0%, ๊ทธ๋ฆฌ๊ณ  90.1%๋กœ ์ปคํ๋ฏผ (34.7%), ์—๋ฉ€์ ผ (50.1%) ๋ณด๋‹ค ์œ ์˜์ ์œผ๋กœ ๋†’์•˜๋‹ค. ์ง€๋ฐฉ์†Œํ™”์œจ์˜ ๊ฒฝ์šฐ ์ƒ˜ํ”Œ ๊ฐ„์˜ ์œ ์˜๋ฏธํ•œ ๊ฒฐ๊ณผ ์ฐจ์ด๋Š” ๋‚˜ํƒ€๋‚˜์ง€ ์•Š์•˜๋‹ค. Confocal microscopy๋กœ ๊ฐ ์†Œํ™” ๋‹จ๊ณ„ ๋ณ„ ์ƒ˜ํ”Œ ๋‚ด์˜ ์ง€๋ฐฉ๊ตฌ์˜ ๋ถ„ํฌ๋ฅผ ๊ด€์ฐฐํ•ด๋ณธ ๊ฒฐ๊ณผ, ์ž… ๋‹จ๊ณ„์—์„œ ์—๋ฉ€์ ผ์€ ํฌ๊ธฐ๊ฐ€ ํฐ coalescence๊ฐ€ ๋‚˜ํƒ€๋‚ฌ์œผ๋‚˜, ํ•„๋“œํ•˜์ด๋“œ๋กœ์ ค์˜ ๊ฒฝ์šฐ์—๋Š” flocculation๋งŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์œ„ ๋‹จ๊ณ„์—์„œ๋„ ์—๋ฉ€์ ผ์€ ์ž… ๋‹จ๊ณ„์—์„œ์™€ ๋™์ผํ•œ coalescence๋ฅผ ๋ณด์˜€์œผ๋ฉฐ, ๋น„ํšจ์†Œ์ฒ˜๋ฆฌ ์Œ€ ์ „๋ถ„ ๊ธฐ๋ฐ˜ ํ•„๋“œํ•˜์ด๋“œ๋กœ์ ค์˜ ๊ฒฝ์šฐ flocculation๊ณผ ์ง€๋ฐฉ๊ตฌ์˜ ํฌ๊ธฐ๊ฐ€ ์ปค์ง„ coalescence๊ฐ€ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ํšจ์†Œ์ฒ˜๋ฆฌ์Œ€์ „๋ถ„ ๊ธฐ๋ฐ˜ ํ•„๋“œํ•˜์ด๋“œ๋กœ์ ค์€ ์ž‘์€ ํฌ๊ธฐ์˜ coalescence๊ฐ€ ๋‚˜ํƒ€๋‚œ ๊ฒƒ์œผ๋กœ ๋ณด์•„ ํšจ์†Œ์ฒ˜๋ฆฌ์ „๋ถ„์ด ๋น„ํšจ์†Œ์ฒ˜๋ฆฌ์ „๋ถ„๋ณด๋‹ค ๋ถ„์ž๋Ÿ‰์ด ์ž‘์•„ ์ง€๋ฐฉ๊ตฌ ์ฃผ์œ„๋ฅผ ์ข€ ๋” ์ด˜์ด˜ํ•˜๊ฒŒ ๋‘˜๋Ÿฌ์‹ธ ์ง€๋ฐฉ ๋ถ„ํ•ด์™€ ๊ด€๋ จ๋œ ํšจ์†Œ ์ž‘์šฉ์„ ๋”๋””๊ฒŒ ํ•˜์—ฌ ์—๋ฉ€์ ผ์˜ ์•ˆ์ •์„ฑ์„ ๋†’์ธ ๊ฒƒ์œผ๋กœ ์ƒ๊ฐ๋œ๋‹ค. ์ƒ์ฒด์ด์šฉ๋ฅ  ์‹คํ—˜์€ ์‹คํ—˜์— ์‚ฌ์šฉ๋˜๋Š” ์ƒ˜ํ”Œ์ด ์ƒ๋‹น๋Ÿ‰ ํฌ์„๋˜์–ด ์‚ฌ์šฉ๋˜๋Š”๋ฐ, ์ด๋กœ ์ธํ•ด ์ƒ˜ํ”Œ ๋‚ด์˜ ์ƒ๋‹นํžˆ ๋‚ฎ์€ ๋†๋„์˜ ์ปคํ๋ฏผ์ด ํ•จ์œ ๋˜์–ด ์žˆ์–ด ์ •ํ™•ํ•œ ์ธก์ •์ด ์–ด๋ ค์šด ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๋”ฐ๋ผ์„œ ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๋กœ ๋ฏธ๋ฃจ์–ด ๋ณด์•„ ํ•„๋“œํ•˜์ด๋“œ๋กœ์ ค ์‹œ์Šคํ…œ์€ ์—ด ์•ˆ์ •์„ฑ์—์„œ ์ปคํ๋ฏผ ๋ณดํ˜ธํšจ๊ณผ๊ฐ€ ๋‚˜ํƒ€๋‚˜์ง€ ์•Š์œผ๋‚˜ UV์•ˆ์ •์„ฑ๊ณผ in vitro ์†Œํ™”์‹œ์Šคํ…œ๊ณผ์ •์—์„œ๋Š” ํ–ฅ์ƒ๋œ ์ปคํ๋ฏผ ๋ณดํ˜ธํšจ๊ณผ๋ฅผ ๋ณด์˜€๋‹ค. ํŠนํžˆ 96GS๋กœ ๋งŒ๋“  ํšจ์†Œ์ฒ˜๋ฆฌ ์Œ€ ์ „๋ถ„ ํ•„๋“œํ•˜์ด๋“œ๋กœ์ ค์˜ ๊ฒฝ์šฐ in vitro ์†Œํ™”์‹œ์Šคํ…œ๊ณผ์ •์—์„œ ์œ ์˜ํ•˜๊ฒŒ ๋†’์€ ๋ณดํ˜ธ ํšจ๊ณผ๊ฐ€ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๋”ฐ๋ผ์„œ, ์ปคํ๋ฏผ์˜ ํ™”ํ•™์  ์•ˆ์ •์„ฑ ํ–ฅ์ƒ์„ ์œ„ํ•œ ์ƒ๋ฆฌํ™œ์„ฑ๋ฌผ์งˆ์ „๋‹ฌ์‹œ์Šคํ…œ์œผ๋กœ์„œ ํšจ์†Œ์ฒ˜๋ฆฌ ์Œ€ ์ „๋ถ„ ๊ธฐ๋ฐ˜ ํ•„๋“œํ•˜์ด๋“œ๋กœ์ ค์˜ ์ ์šฉ๊ฐ€๋Šฅ์„ฑ์ด ํ™•์ธ๋˜์—ˆ๋‹ค.1. Introduction 1 2. Objectives 5 3. Background and Literature Review 6 3.1. Starch 6 3.1.1. Rice starch 6 3.1.2. 4ฮฑGTase-treated rice starch 8 3.2. Filled hydrogel 9 3.3. Curcumin 10 4. Materials & Methods 13 4.1. Physicochemical properties of enzymatic modified starch with 4ฮฑGTase treatment 13 4.1.1. Materials 13 4.1.2. Methods 14 4.1.2.1. Isolation of rice starch 14 4.1.2.2. Preparation of 4ฮฑGTase 15 4.1.2.2.1. Transformation, extraction and purification of 4ฮฑGTase 15 4.1.2.2.2. Assay of 4ฮฑGTase activity 16 4.1.2.3. Preparation of 4ฮฑGTase-treated rice starch 17 4.1.2.4. Physicochemical properties of 4ฮฑGTase-treated rice starch 18 4.1.2.4.1. Molecular weight distribution (HPSEC) 18 4.1.2.4.2. Distribution of branched chain length (HPAEC) 19 4.1.2.4.3. Rheological properties 21 4.1.2.4.4. Viscosity analysis 22 4.1.2.4.5. Granular morphology 23 4.1.2.4.6. Starch crystallinity 23 4.1.2.4.7. Iodine absorption capacity 24 4.1.2.5. Statistical analysis 24 4.2. Encapsulation of the curcumin in filled hydrogel & microencapsulation powder 25 4.2.1. Materials 25 4.2.2. Methods 26 4.2.2.1. Fabrication of curcumin-loaded filled hydrogel 26 4.2.2.1.1. Preparation of curcumin-loaded O/W emulsion 26 4.2.2.1.2. Preparation of filled hydrogel with starch 27 4.2.2.2. Characteristics of curcumin-loaded filled hydrogel 29 4.2.2.2.1. Rheological properties of filled hydrogel 29 4.2.2.2.2. Texture profile analysis (TPA) 30 4.2.2.3. Fabrication of curcumin-loaded microencapsulation powder 31 4.2.2.4. Characteristics of microencapsulation powder 32 4.2.2.4.1. Morphology of microencapsulation powder 32 4.2.2.4.2. Fourier Transform Infrared Spectroscopy (FT-IR) 32 4.2.2.5. Curcumin stability analysis of filled hydrogel and microencapsulation powder 33 4.2.2.5.1. Heat stability 33 4.2.2.5.2. UV stability 34 4.2.2.6.Curcumin retention rate & bioavailability analysis of curcumin in filled hydrogel and microencapsulation powder 35 4.2.2.6.1. In vitro digestibility test 35 4.2.2.6.2. Confocal laser scanning microscopy (CLSM) 37 4.2.2.6.3. Curcumin retention rate 38 4.2.2.6.4. Curcumin bioavailability analysis 39 4.2.2.6.4.1. Caco-2 cell culture 39 4.2.2.6.4.2. MTT cytotoxicity assay 40 4.2.2.6.4.3. Curcumin bioavailability 41 4.2.2.6.4.4. Determination of curcumin content 42 4.2.2.7. Statistical analysis 42 5. Results and Discussion 43 5.1. Physicochemical properties of enzymatic modified starch with 4ฮฑGTase treatment 43 5.1.1. Molecular weight distribution (HPSEC) 43 5.1.2. Distribution of branched chain length (HPAEC) 46 5.1.3. Rheological properties 50 5.1.4. Viscosity analysis 58 5.1.5. Granular morphology 61 5.1.6. Starch crystallinity 63 5.1.7. Iodine absorption capacity 66 5.2. Encapsulation of the curcumin in filled hydrogel & microencapsulation powder 69 5.2.1. Characteristics of filled hydrogel 69 5.2.1.1. Rheological properties of filled hydrogel 69 5.2.1.2. Texture profile analysis (TPA) 74 5.2.2. Characteristics of microencapsulation powder 77 5.2.2.1. Morphology of microencapsulation powder 77 5.2.2.2. Fourier Transform Infrared Spectroscopy (FT-IR) 81 5.2.3. Curcumin stability analysis of filled hydrogel and microencapsulation powder 85 5.2.3.1. Heat stability 85 5.2.3.2. UV stability 89 5.2.4. Curcumin retention rate & bioavailability analysis of curcumin in filled hydrogel and microencapsulation powder 93 5.2.4.1. In vitro digestibility test 93 5.2.4.2. Confocal laser scanning microscopy (CLSM) 96 5.2.4.3. Curcumin retention rate 101 5.2.4.4. Caco-2 cell cytotoxicity 106 5.2.4.5. Curcumin bioavailability 108 6. Conclusions 110 7. References 111Maste
    • โ€ฆ
    corecore