23 research outputs found

    Development of New Techinique for River Discharge Measurement

    Full text link
    台灣地區之二十一條主要河川水系,川短坡陡,單位面積流量大,洪水到達時間快,暴雨時水流湍急,河川流量隨降雨而迅速漲落,中、高水位之流量觀測十分困難。又目前流量觀測方法所需時間冗長,無法有效地掌握其時變性,並不適用於中、高水位及變量流之流況。然而在上述流況下之流量及輸砂量在年流量及年輸砂量佔有相當大的比值,因此該資料對於河川治理與水資源規劃極具參考應用價值。舉凡數學水理模式之檢定與驗證、水流阻力之推估、水位流量關係之率定及可靠洪水預報模式之建立皆可運用。因此,研發新式流量觀測技術,以提高量測精度與效率,實有其必要性。為克服此一問題,本計畫擬運用最新流速量測儀器,配合分析水利處河川局之流量觀測站資料,期能發展一套便捷而可靠之河川流量量測方法,裨益於台灣特殊水文地文條件下,各項防洪工程及水資源規劃之應用

    Development of New Techinique for River Discharge Measurement

    Full text link
    台灣地區之二十一條主要河川水系,川短坡陡,單位面積流量大,洪水到達時間快,暴雨時水流湍急,河川流量隨降雨而迅速漲落,中、高水位之流量觀測十分困難。又目前流量觀測方法所需時間冗長,無法有效地掌握其時變性,並不適用於中、高水位及變量流之流況。然而在上述流況下之流量及輸砂量在年流量及年輸砂量佔有相當大的比值,因此該資料對於河川治理與水資源規劃極具參考應用價值。舉凡數學水理模式之檢定與驗證、水流阻力之推估、水位流量關係之率定及可靠洪水預報模式之建立皆可運用。因此,研發新式流量觀測技術,以提高量測精度與效率,實有其必要性。為克服此一問題,本計畫擬運用最新流速量測儀器,配合分析水利處河川局之流量觀測站資料,期能發展一套便捷而可靠之河川流量量測方法,裨益於台灣特殊水文地文條件下,各項防洪工程及水資源規劃之應用

    河川流量新量測技術之研發(II)

    Full text link
    台灣地區之二十四條主要河川水系,川短坡陡,單位面積流量大,洪水到達時間快,暴雨時水流湍急,河川流量隨降雨而迅速漲落,中、高水位之流量觀測十分困難。又目前流量觀測方法所需時間冗長,無法有效地掌握其時變性,並不適用於中、高水位及變量流之流況。然而在上述流況下之流量及輸砂量在年流量及年輸砂量佔有相當大的比值,因此該資料對於河川治理與水資源規劃極具參考應用價值。舉凡數學水理模式之檢定與驗證、水流阻力之推估、水位流量關係之率定及可靠洪水預報模式之建立皆可運用。因此,研發新式流量觀測技術,以提高量測精度與效率,實有其必要性。為克服此一問題,本計畫擬運用最新流速量測儀器,配合分析水利處河川局之流量觀測站資料,期能發展一套便捷而可靠之河川流量量測方法,裨益於台灣特殊水文地文條件下,各項防洪工程及水資源規劃之應用

    Characteristics of Rapid Channel Flow

    Full text link
    中文摘要 本研究係應用光纖雷射杜卜勒測速儀 (Fiber-optic Laser Doppler Velocimetry , FLDV),量測湍流粗糙與光滑底床不同寬深比、坡度、垂線位置等流場中之各項參數,並利用雷諾應力模式 (Reynolds-Stress Model, RSM) 模擬及預測各項水力參數。本研究大部份實驗屬於超臨界流況,且流場分二維與三維討論之。 文中主要分析項目包括:平均速度剖面、紊流強度分佈及雷諾應力分佈等水力特性。在平均速度分佈方面,除分別與壁定理、速度欠損律、冪次定理及邱氏流速剖面等流速分佈定理作比較外,並針對垂線最大流速發生於液面與液面下之流速剖面進行深入探討。紊流強度分佈及雷諾應力分析則與Nezu & Rodi (1986) 及Tominaga & Nezu (1992) 等之結果進行比較,以研析湍流流場之水力特性與機制。 研究結果顯示,本試驗範圍湍流光滑流場之垂線最大流速位於液面(α=1) 時,以速度欠損律描述平均速度剖面外區 (y/H > 0.2),其結果頗為良好。當垂線最大流速位於液面下(α< 1) 時,則以邱氏速度分佈之符合程度較佳。在粗糙流場中,無論α=1或α< 1,皆以冪次定理速度分佈來描述外區平均速度剖面之結果較為良好。 湍流光滑流場之主流向無因次紊流強度與Nezu & Rodi (1986) 所提模式頗為一致,而粗糙流場則以本研究修正之推估模式與實測值符合較佳。湍流光滑與粗糙流場之垂向無因次紊流強度,皆以本研究之修正推估模式吻合度較佳。 當α=1 時,無論光滑或粗糙流場無因次雷諾應力值可以二維流場之理論式來表示;當α< 1 時,光滑流場之無因次雷諾應力值有明顯隨坡度增加而減小之趨勢;而粗糙流場無因次雷諾應力之峰值,因受二次流影響,略有回升之現象。 雷諾應力模式 (RSM) 模擬平均速度剖面,無論於光滑或粗糙流場均較 模式之吻合度為佳。利用RSM模擬光滑或粗糙流場主流向無因次紊流強度之模擬值較實測資料為低;而垂向無因次紊流強度之模擬值與實測資料頗為吻合。RSM預測光滑及粗糙流場之橫向無因次紊流強度(w''/U*),除粗糙窄深流場之w''/U* 模擬值偏高外,其餘之預測結果與Nezu (1977) 模式曲線頗為吻合。 此外,本研究亦針對天然河川較窄深之流況進行初步探討,發現隨寬深比的減小,水流受邊壁之影響漸增,天然河川斷面上二維區域亦相對減小,最大流速發生位置有漸次下降之趨勢,且各垂線流速分佈無法以對數公式完全概括,此現象與室內實驗資料分析結果頗為一致。ABSTRACT The Fiber-optic Laser Doppler Velocimetry (FLDV) was adopted in this experimental study to investigate the characteristics of the rapid channel flow over smooth and rough boundaries. In this study, the effects of aspect ratio (ratio of channel width to depth), channel bed slope and vertical position on the flow were analyzed. The Reynolds Stress Model (RSM) was used to predict various parameters for the rapid channel flow. Both the two-dimensional and the three-dimensional flows were discussed. Most of the experiments conducted in this study belonged to supercritical flow. The main items analyzed in this research were the mean velocity profiles, the turbulence intensities, and the Reynolds stress of the rapid channel flow. The measured velocity profiles were compared with the law of the wall, the velocity defect law, the power law, and Chiu's velocity theorem. The velocity profiles for conditions with the maximum point velocity occurred both on (α=1) and below (α< 1) the water surface were discussed. The measured distributions of the turbulence intensities and the Reynolds stress were analyzed and compared with the results of Nezu and Rodi (1986), and Tominaga and Nezu (1992). The measured mean velocity profiles for the outer region (y/H > 0.2 ) compared well with the velocity defect law for the smooth bed when α=1. The Chiu's velocity theorem gave fair prediction for the smooth bed when α< 1. The power law fitted the measured mean velocity profiles well for the smooth and rough beds, including the conditions with the maximum point velocity occurred both on and below the water surface. The measured longitudinal turbulence intensities for the rapid channel flow over the smooth bed were consistent with Nezu and Rodi's (1986) model. A modified model, however, provided a better prediction for the rapid channel flow over the rough bed. The measured vertical turbulence intensities can be estimated by a modified model proposed in this study for both the smooth bed and the rough bed channels. When the maximum point velocity located on the water surface (α=1), the measured Reynolds stress distributions for both the smooth and the rough bed channels can be expressed by a theoretical expression for the two dimensional flow. When the maximum point velocity located below the water surface (α< 1), the peak of measured Reynolds stress decreased with an increase of the channel slope for the smooth bed, and it tended to increase with an increase of the channel slope due to the secondary flow effect for the rough bed channel. The mean velocity profiles simulated by the Reynolds Stress Model (RSM) were better than those by the standard model for both the smooth and the rough bed channel flows. The simulated vertical turbulence intensities by the RSM were consisted with the measured data, and the simulated longitudinal turbulence intensities were lower than the experimental results. The predicted spanwise turbulence intensities by the RSM were consistent with the results of Nezu's (1977) model except for the rough bed channel flow with low aspect ratio. In addition, a preliminary study for the characteristics of the deep narrow natural river flow was also performed. It was found that the amount of depression for the point of maximum velocity below the water surface increased with a decrease of the aspect ratio, which was consistent with the results of the laboratory experiment.封面 謝誌 中文摘要 英文摘要 目錄 圖目錄 表目錄 符號說明 第一章 緒論 1-1 研究動機 1-2 研究目的 1-3 本文組織 第二章 文獻回顧 2-1 理論床面 2-2 平均流速分佈 2-3 冪次定理(power law) 2-4 邱氏流速分佈模式 2-5 寬明渠水流流速分佈 2-6 窄明渠水流流速分佈 2-7 紊流強度 2-8 二次流(secondary current) 2-9 紊流模式(turbulence model) 第三章 理論分析 3-1 紊流之連續及運動方程式 3-2 平均流速分佈 3-3 紊流強度 3-4 紊流之剪應力 3-5 三維明渠流場之判別 3-6 二次流(secondary current) 第四章 實驗設備與方法 4-1 實驗設備 4-1.1 循環水槽 4-1.2 FLDV系統 4-2 實驗佈置 4-3 實驗步驟 4-4 實驗條件 4-5 數值模式與方法 4-5.1 邊界條件 4-5.2 起始條件 4-5.3 網格設計 4-5.4 模擬步驟 4-5.5 模式率定 第五章 光滑底床實驗結果與分析 5-1 平均速度剖面 5-1.1 壁定理(law of the wall) 5-1.2 速度欠損律(velocity-defect law) 5-1.3 冪次定理(power law) 5-1.4 最大流速發生位置(a值)的變化規律 5-1.5 邱氏理論之流速分佈公 5-1.6 數值模擬平均速度 5-2 紊流強度分佈 5-2.1 主流方向之紊流強度分佈 5-2.2 垂直方向之紊流強度分佈 5-2.3 數值模擬紊流強度 5-3 雷諾應力分析 第六章 粗糙底床實驗結果與分析 6-1 平均速度剖面 6-1.1 壁定理(law of the wall) 6-1.2 冪次定理(power law) 6-1.3 數值模擬平均速度 6-2 紊流強度分佈 6-2.1 主流方向之紊流強度分析 6-2.2 垂直方向之紊流強度分析 6-2.3 數值模擬紊流強度 6-3 雷諾應力分析 6-4 天然河川實測資料分析 第七章 結論與建議 7.1 結論 7.2 建議 參考文獻 附
    corecore