6 research outputs found

    Study on the growth rhythm and water uptake character of cotton roots in arid area oasis

    No full text
    在生态环境极其脆弱的我国西北干旱地区,作物的根系吸水活动不仅对土壤水分动态产生重要影响,而且强烈影响着地表水、土壤水和地下水的相互转化过程。基于对大田棉花一个生育期的试验和观测的数据,本文对干旱区绿洲棉花根系生长规律以及吸水特性的相关内容进行了理论分析和研究,并获得了以下一些成果或结论:(1)根据实测的棉花毛细根长密度数据,建立了地面漫灌棉花毛细根系生长模型。在此基础之上建立了依赖于气象要素、土壤水分要素以及棉花根长密度等要素的地面灌棉花根系吸水模型。 (2)在对基础数据进行分析的基础上,本文归纳出两种灌溉方式下棉田土壤水分动态变化的规律,并对这两种灌溉方式下土壤水分变化的规律进行了比较,其差异性主要体现在表层土壤水分的变化差异,不同生长期之间的变化差异等方面上。(3)地面灌棉田棉花根系分布集中在0-30cm层次的土壤中,根长密度最大值出现在10cm左右的土层中。从二维的角度来看,根系分布最集中的区域为10cm深度土层距离棉株15-25cm的区域,最大达40mm/cm3以上。膜下滴灌棉花根系空间及时间变化有与地面灌棉田明显不同的地方,一是根长密度最大值出现在地表附近,根长密度随深度增加呈波动的减小趋势。二是时间变化的区别也很明显,在7月11日之前,根系深度在增加,根长密度在增大。但7月11日之后,根系深度有所增加,但根长密度变化很缓慢,看不出增大的趋势也看不出减小的趋势,似乎是处在一个动态的平衡之中。(4)地面灌和膜下滴灌棉花的叶面积指数变化有一些异同点:在时间上都呈抛物线形变化,而且最大值出现的时间基本一致;膜下滴灌棉花叶面积指数总体上要大于地面灌棉田。(5)根据茎流计测定的9月份棉花实际蒸腾量资料,棉花蒸腾的日变化基本规律是,0时至9时,棉花茎流维持在一个很低的水平。10时开始,茎流开始迅速增加。至午后15时达到最大值,之后持续一段时间,茎流值开始回落。茎流日间差别不太明显,说明这一段时间棉花茎流相对比较稳定。In the arid area of the North-west China, where the ecological environment is extraordinary fragile, the action of water uptake by crop roots play an important effect not only on the dynamic of soil water, but also on the conversion process among surface water, soil water and ground water. Based on the data of a period of duration of field cotton, this paper made some theoretical analysis on the growth rhythm and water uptake character of cotton roots, and has got the following conclusions: (1) Based on the data of the cotton hair roots, this paper established the growing model of the cotton hair roots in the condition of ground irrigation. This paper also established the cotton root water uptake model, which relied on the weather condition, soil water content and cotton hair roots length density. (2) Based on the analysis of the foundational data, this paper found some different dynamic regularities of the cotton field under different irrigation systems, which representing on the different of soil water content of different layers or of different growth phases. (3) The ground irrigative cotton roots distribute concentratedly in the 0-30cm soil, the maximum of cotton hair roots length density was found in the 10cm depth soil layer. From the perspective of two-dimensional, the concentrated distributed region is in the region of 10cm depth and 15-25cm far from the cotton plant, the maximum of cotton hair roots length density can forereach 40 mm/cm3. The temporal and spatial variation of the Mulch-trickle cotton roots have obvious different from the ground irrigative cotton roots, the maximum of cotton hair roots length density was found in the surface soil, as the depth increasing, the cotton hair roots length density diminish undulatingly. The different of temporal change is obvious, too. Before Jul.11st, the depth of cotton roots is increasing; the hair roots length density is augmenting. But after Jul.11st, the depth of cotton roots increase a little, and the change of the cotton hair roots length density is very slowly, we can’t found whether it is increasing or not, it was seemed in a dynamic balance. (4) The temporal changes of LAI of the cotton under different irrigation systems have some similarities and differences: they all appeared a parabolic shape change over time, and their maximums appeared at almost the same time; As a whole, the LAI of Mulch-trickle cotton is greater than the LAI of ground irrigated cotton. (5) According to the data measured by Sap Flow Probe in Sep., the daily regular of the diurnal variation of cotton sap flow is like this: from 0 o’clock to 9 a.m., the sap flow of cotton hold on a very lower level. And from 10 a.m., it increases quickly. And on the 15 p.m., it reaches its acme, then after the state sustains for a period of time, the sap flow begin fall down. The day variance of the sap flow isn’t remarkable, which is showed that the sap flow of the cotton is steady correspondingly in this time

    塔里木河流域白杨农田防护林蒸散量估算模型

    No full text
    以水面蒸发量为基础,利用多年的白杨农田防护林试验资料,建立了塔里木河流域白杨农田防护林蒸散量的两种估算模型,并利用白杨林实际蒸散量的测量值,分别对两种模型进行了验证。结果表明,从总体上来说,模型(Ⅰ)计算精度较高,但两种模型的相对误差都不是很大,都可以作为计算塔里木河流域白杨农田防护林蒸散量的方法而使用,但要根据具体情况加以应用

    干旱区旱生芦苇根系分布及土壤水分动态

    No full text
    根据2003-2006年实测的旱生芦苇地的土壤水分资料和芦苇根系资料,对旱生芦苇的土壤水分时空变化特征及产生变化的原因进行了分析。结果表明,1)旱生芦苇根系深度达250 cm以上,毛细根分布最多区域在0~30cm土层,30~210 cm土层芦苇毛细根重密度呈现波动起伏,210 cm深度以下逐渐减小。2)2003-2006年芦苇地土壤水分年际间变化较为复杂,不同的生长阶段年际变化特征不同。3)每年的芦苇生长期(4-10月)内,土壤水分呈现"降-升-稳定-降-稳定"的变化规律。4)芦苇地土壤水分垂直变化特点是,0~200 cm土壤水分变化较为活跃,200 cm深度以下土壤水分变化较为稳定

    膜下滴灌条件下不同矿化度水对土壤水盐动态及棉花产量的影响

    No full text
    塔里木盆地分布着相当大面积矿化度在3~5 g/L之间的浅层地下咸水,有很大的开发利用潜力。通过微区测坑试验,采用膜下滴灌技术,用不同矿化度的咸水灌溉棉花,探求其对土壤水盐动态和棉花产量的影响。研究表明:(1)土壤盐分和水分二者的动态变化是紧密相关的,其中,土壤盐分动态变化主要受大气和灌溉水的影响,土壤水分的动态变化主要受棉花生长阶段和灌溉水的影响;(2)咸水膜下滴灌与淡水膜下滴灌同样具有淋洗和压盐效果;(3)通过棉花产量分析发现:与采用淡水灌溉相比,咸水灌溉对产量,单株铃数和单铃重具有一定的影响,对衣分没有影响;(4)当灌溉水矿化度大于3.24 g/L时,不利于塔里木盆地进行农业生产

    阿拉尔绿洲灌区棉田土壤水分扩散率的测定

    No full text
    土壤水分扩散率是研究土壤水盐运动的重要参数之一。在室内用非稳定流水平土柱法对塔里木河流域阿拉尔绿洲灌区棉田土壤水分扩散率进行了测定。建立了Boltzmann变换参数、土壤水分扩散率与土壤含水率之间的定量关系。结果表明:土壤水分扩散率与土壤含水率呈单调递增关系。当土壤含水率趋近饱和含水率时,土壤水分扩散率趋近于无穷大。因此,用指数函数或幂函数不能很好地刻画土壤水分扩散系数与土壤的体积含水量之间的定量关系。本文建立的土壤水分扩散率与土壤含水率之间的函数关系较好地反映了土壤水分扩散系数与土壤的体积含水量之间的客观规律

    渭干河平原绿洲适宜规模

    No full text
    荒漠和绿洲长期共存,绿洲系统的生存发展需要有较好的绿洲植被生态系统支撑.干旱区平原绿洲,应以水为中心确定绿洲规模,防止水资源不足情况下土地过度开发造成的荒漠化和沙漠化.良性循环的稳定绿洲必须具有合理的农林牧用地结构.开展绿洲适宜规模与发展空间研究,将为绿洲的有效建设提供理论和应用依据.本文通过水热、水土平衡分析,建立了适宜绿洲数学模型.根据渭干河平原绿洲多年的水文气象资料,依据水量平衡原理,计算了该绿洲可供蒸发蒸腾的水资源量、适宜的绿洲和耕地面积.结果表明,渭干河平原绿洲可供蒸发蒸腾的水资源量为22.32×108m3,在常规地面灌溉条件下适宜的绿洲面积为3716.06km2,其中适宜的耕地面积为1564.79km2;在节水灌溉条件下,适宜的绿洲面积5515.49km2,其中适宜的耕地面积为2322.31km2.世界银行贷款项目——渭干河流域农业灌溉排水工程结束后达到的绿洲面积为4123km2,农田耕地面积为1507km2,绿洲和耕地面积比较适宜,如果采取节水灌溉措施可适度扩大绿洲规模
    corecore