396 research outputs found

    Electronic transport in locally gated graphene nanoconstrictions

    Full text link
    We have developed the combination of an etching and deposition technique that enables the fabrication of locally gated graphene nanostructures of arbitrary design. Employing this method, we have fabricated graphene nanoconstrictions with local tunable transmission and characterized their electronic properties. An order of magnitude enhanced gate efficiency is achieved adopting the local gate geometry with thin dielectric gate oxide. A complete turn off of the device is demonstrated as a function of the local gate voltage. Such strong suppression of device conductance was found to be due to both quantum confinement and Coulomb blockade effects in the constricted graphene nanostructures.Comment: 3 pages 3 figures; separated and expanded from arXiv:0705.3044v

    Bipolar High Field Excitations in Co/Cu/Co Nanopillars

    Full text link
    Current-induced magnetic excitations in Co/Cu/Co bilayer nanopillars (\sim50 nm in diameter) have been studied experimentally at low temperatures for large applied fields perpendicular to the layers. At sufficiently high current densities excitations, which lead to a decrease in differential resistance, are observed for both current polarities. Such bipolar excitations are not expected in a single domain model of spin-transfer. We propose that at high current densities strong asymmetries in the longitudinal spin accumulation cause spin-wave instabilities transverse to the current direction in bilayer samples, similar to those we have reported for single magnetic layer junctions.Comment: 4 pages, 4 figures+ 2 additional jpg figures (Fig. 2d and Fig. 3) high resolution figures and recent related articles are available at: http://www.physics.nyu.edu/kentlab/news.htm

    Energy Band Gap Engineering of Graphene Nanoribbons

    Full text link
    We investigate electronic transport in lithographically patterned graphene ribbon structures where the lateral confinement of charge carriers creates an energy gap near the charge neutrality point. Individual graphene layers are contacted with metal electrodes and patterned into ribbons of varying widths and different crystallographic orientations. The temperature dependent conductance measurements show larger energy gaps opening for narrower ribbons. The sizes of these energy gaps are investigated by measuring the conductance in the non-linear response regime at low temperatures. We find that the energy gap scales inversely with the ribbon width, thus demonstrating the ability to engineer the band gap of graphene nanostructures by lithographic processes.Comment: 7 pages including 4 figure

    Electronic transport and quantum Hall effect in bipolar graphene p-n-p junction

    Full text link
    We have developed a device fabrication process to pattern graphene into nanostructures of arbitrary shape and control their electronic properties using local electrostatic gates. Electronic transport measurements have been used to characterize locally gated bipolar graphene pp-nn-pp junctions. We observe a series of fractional quantum Hall conductance plateaus at high magnetic fields as the local charge density is varied in the pp and nn regions. These fractional plateaus, originating from chiral edge states equilibration at the pp-nn interfaces, exhibit sensitivity to inter-edge backscattering which is found to be strong for some of the plateuas and much weaker for other plateaus. We use this effect to explore the role of backscattering and estimate disorder strength in our graphene devices.Comment: 4 pages 4 figures, to appear in Phys. Rev. Lett. Original version arXiv:0705.3044v1 was separated and expanded to this current version and arXiv:0709.173

    Dependence of quantum-Hall conductance on the edge-state equilibration position in a bipolar graphene sheet

    Full text link
    By using four-terminal configurations, we investigated the dependence of longitudinal and diagonal resistances of a graphene p-n interface on the quantum-Hall edge-state equilibration position. The resistance of a p-n device in our four-terminal scheme is asymmetric with respect to the zero point where the filling factor (ν\nu) of the entire graphene vanishes. This resistance asymmetry is caused by the chiral-direction-dependent change of the equilibration position and leads to a deeper insight into the equilibration process of the quantum-Hall edge states in a bipolar graphene system.Comment: 5 pages, 4 figures, will be published in PR
    corecore