4,537 research outputs found
Recognition of partially occluded threat objects using the annealed Hopefield network
Recognition of partially occluded objects has been an important issue to airport security because occlusion causes significant problems in identifying and locating objects during baggage inspection. The neural network approach is suitable for the problems in the sense that the inherent parallelism of neural networks pursues many hypotheses in parallel resulting in high computation rates. Moreover, they provide a greater degree of robustness or fault tolerance than conventional computers. The annealed Hopfield network which is derived from the mean field annealing (MFA) has been developed to find global solutions of a nonlinear system. In the study, it has been proven that the system temperature of MFA is equivalent to the gain of the sigmoid function of a Hopfield network. In our early work, we developed the hybrid Hopfield network (HHN) for fast and reliable matching. However, HHN doesn't guarantee global solutions and yields false matching under heavily occluded conditions because HHN is dependent on initial states by its nature. In this paper, we present the annealed Hopfield network (AHN) for occluded object matching problems. In AHN, the mean field theory is applied to the hybird Hopfield network in order to improve computational complexity of the annealed Hopfield network and provide reliable matching under heavily occluded conditions. AHN is slower than HHN. However, AHN provides near global solutions without initial restrictions and provides less false matching than HHN. In conclusion, a new algorithm based upon a neural network approach was developed to demonstrate the feasibility of the automated inspection of threat objects from x-ray images. The robustness of the algorithm is proved by identifying occluded target objects with large tolerance of their features
Formation of Warped Disks by Galactic Fly-by Encounters. I. Stellar Disks
Warped disks are almost ubiquitous among spiral galaxies. Here we revisit and
test the `fly-by scenario' of warp formation, in which impulsive encounters
between galaxies are responsible for warped disks. Based on N-body simulations,
we investigate the morphological and kinematical evolution of the stellar
component of disks when galaxies undergo fly-by interactions with adjacent dark
matter halos. We find that the so-called `S'-shaped warps can be excited by
fly-bys and sustained for even up to a few billion years, and that this
scenario provides a cohesive explanation for several key observations. We show
that disk warp properties are governed primarily by the following three
parameters; (1) the impact parameter, i.e., the minimum distance between two
halos, (2) the mass ratio between two halos, and (3) the incident angle of the
fly-by perturber. The warp angle is tied up with all three parameters, yet the
warp lifetime is particularly sensitive to the incident angle of the perturber.
Interestingly, the modeled S-shaped warps are often non-symmetric depending on
the incident angle. We speculate that the puzzling U- and L-shaped warps are
geometrically superimposed S-types produced by successive fly-bys with
different incident angles, including multiple interactions with a satellite on
a highly elongated orbit.Comment: 16 pages, 13 figures, 3 tables. Accepted for publication in Ap
Could Fractional Exhaled Nitric Oxide Test be Useful in Predicting Inhaled Corticosteroid Responsiveness in Chronic Cough? A Systematic Review
© 2016 Background Fractional exhaled nitric oxide (FENO) is a safe and convenient test for assessing T H 2 airway inflammation, which is potentially useful in the management of patients with chronic cough. Objective To summarize the current evidence on the diagnostic usefulness of FENO for predicting inhaled corticosteroid (ICS) responsiveness in patients with chronic cough. Methods A systematic literature review was conducted to identify articles published in peer-reviewed journals up to February 2015, without language restriction. We included studies that reported the usefulness of FENO (index test) for predicting ICS responsiveness (reference standard) in patients with chronic cough (target condition). The data were extracted to construct a 2 × 2 accuracy table. Study quality was assessed with Quality Assessment of Diagnostic Accuracy Studies 2. Results We identified 5 original studies (2 prospective and 3 retrospective studies). We identified considerable heterogeneities in study design and outcome definitions, and thus were unable to perform a meta-analysis. The proportion of ICS responders ranged from 44% to 59%. Sensitivity and specificity ranged from 53% to 90%, and from 63% to 97%, respectively. The reported area under the curve ranged from abou t 0.60 to 0.87; however, studies with a prospective design and a lower prevalence of asthma had lower area under the curve values. None measured placebo effects or objective cough frequency. Conclusions We did not find strong evidence to support the use of FENO tests for predicting ICS responsiveness in chronic cough. Further studies need to have a randomized, placebo-controlled design, and should use validated measurement tools for cough. Standardization would facilitate the development of clinical evidence
Thermal and electric properties of Nd(1.85)Ce(0.15)CuO(4-y) and Pr(1.85)Ce(0.15)CuO(4-y)
Electric resistivity, magnetic susceptibility, thermoelectric power, and Hall coefficient of Nd(1.85)Ce(0.15)CuO(4-y) and Pr(1.85)Ce(0.15)CuO(4-y) whose onset temperature of the superconductivity are 24 and 23 K were measured. Experimental results show many interesting features. In particular, the Hall coefficients are negative and relatively flat as a function of temperature. However, the temperature dependence of the thermoelectric power (TEP) for these two samples shows the positive sign for both samples in contrast to the previous results. Moreover, TEP for both samples remains flat in the normal state below 250 K, but decreases rapidly above 250 K. TEP of only Pr(1.85)Ce(0.15)CuO(4-y) shows a peak near 50 K. Finally, onset temperatures of sudden drop of TEP are higher than those of resistance drop. The physical properties of these samples produced at different conditions such as different heat treatment temperatures, atmospheres were also measured. TEP and resistance measurement show that oxygen deficiency is essential to produce better superconducting samples. Correlation between TEP and superconductivity for these different samples are discussed
Thermal and electric properties of Nd(1.85)Ce(0.15)CuO(4-y) and Pr(1.85)Ce(0.15)CuO(4-y)
Electric resistivity, magnetic susceptibility, thermoelectric power, and Hall coefficient of Nd(1.85)Ce(0.15)CuO(4-y) and Pr(1.85)Ce(0.15)CuO(4-y) whose onset temperature of the superconductivity are 24 K and 23 K were measured. Experimental results show many interesting features. In particular, the Hall coefficients are negative and relatively flat as a function of temperature. However, the temperature dependence of the thermoelectric power (TEP) for these two samples shows the positive sign for both samples in contrast to the previous results. Moreover TEP for both samples remains flat in the normal state below 250 K, but decreases rapidly above 250 K. TEP of only Pr(1.85)Ce(0.15)CuO(4-y) shows a peak near 50 K. Finally onset temperatures of sudden drop of TEP are higher than those of resistance drop. The physical properties of these samples produced at different conditions such as different heat treatment temperatures, atmospheres were also measured. TEP and resistance measurement show that oxygen deficiency is essential to produce better superconducting samples. Correlation between TEP and superconductivity for these different samples will be discussed
Anabaena sp. Strain PCC 7120 hetY Gene Influences Heterocyst Development
The filamentous cyanobacterium Anabaena (Nostoc) sp. strain PCC 7120 responds to starvation for fixed nitrogen by producing a semiregular pattern of nitrogen-fixing cells called heterocysts. Overexpression of the hetY gene partially suppressed heterocyst formation, resulting in an abnormal heterocyst pattern. Inactivation of hetY increased the time required for heterocyst maturation and caused defects in heterocyst morphology. The 489-bp hetY gene (alr2300), which is adjacent to patS (asl2301), encodes a protein that belongs to a conserved family of bacterial hypothetical proteins that contain an ATP-binding motif
Distributed functions of detection and discrimination of vibrotactile stimuli in the hierarchical human somatosensory system
According to the hierarchical view of human somatosensory network, somatic sensory information is relayed from the thalamus to primary somatosensory cortex (Si), and then distributed to adjacent cortical regions to perform further perceptual and cognitive functions. Although a number of neuroirnaging studies have examined neuronal activity correlated with tactile stimuli, comparatively less attention has been devoted toward understanding how vibrotactile stimulus information is processed in the hierarchical somatosensory cortical network. To explore the hierarchical perspective of tactile information processing, we studied two cases: (a) discrimination between the locations of finger stimulation; and (b) detection of stimulation against no stimulation on individual fingers, using both standard general linear model (GLM) and searchlight multi-voxel pattern analysis (MVPA) techniques. These two cases were studied on the same data set resulting from a passive vibrotactile stimulation experiment. Our results showed that vibrotactile stimulus locations on fingers could be discriminated from measurements of human functional magnetic resonance imaging (fMRI). In particular, it was in case (a) we observed activity in contralateral posterior parietal cortex (PPC) and supramarginal gyrus (SMG) but not in Si, while in case; (b) we found significant cortical activations in Si but not in PPC and SMG. These discrepant observations suggest the functional specialization with regard to vibrotactile stimulus locations, especially, the hierarchical information processing in the human somatosensory cortical areas. Our findings moreover support the general understanding that Si is the main sensory receptive area for the sense of touch, and adjacent cortical regions (i.e., PPC and SMG) are in charge of a higher level of processing and may thus contribute most for the successful classification between stimulated finger locations.open0
Cough persistence in adults with chronic cough: a 4-year retrospective cohort study
BackgroundThere is very limited evidence regarding long-term prognosis of chronic cough. We examined longitudinal outcomes among patients with chronic cough, and explored predictors of cough persistence.MethodsA retrospective cohort was constructed of adults who had newly visited a specialist cough clinic in 2012–2013. All had undergone systematic investigation for chronic cough. The Hull Airway Reflux Questionnaire (HARQ) was administered to assess reflux cough symptoms. A follow-up survey was conducted in 2016–2017 to assess cough persistence.ResultsFrom 418 candidates, 323 participated in the follow-up study; main analyses focused on patients with chronic persistent cough (n=64; 19.8%) and remitted cough (n=193; 59.8%). Compared with remitted cough, chronic persistent cough group had more family history of chronic cough (17.2% vs. 4.7%, p=0.001) and cold air-sensitive cough (62.5% vs. 44.6%, p=0.013). The total HARQ score did not differ; however, two items (cough with eating and cough with certain foods) scored significantly higher in chronic persistent cough. In multivariate analyses, a family history of chronic cough (adjusted odds ratio 4.27 [95% confidence interval 1.35-9.89]), cold air-sensitive cough (2.01 [1.09-3.73]), and cough with eating (1.22 [1.02–1.45]) were associated with chronic persistent cough at 4 years.Conclusions Cough persists in about 20% of patients after 4 years following systematic assessment and treatments. Several cough characteristics, such as family history, cold air-sensitivity, or reflux cough, may be associated with cough persistence. Larger cohort studies are warranted to further understand long-term prognosis and confirm predictors of persistence in patients with chronic cough
The Early Light Curve of a Type Ia Supernova 2021hpr in NGC 3147: Progenitor Constraints with the Companion Interaction Model
The progenitor system of Type Ia supernovae (SNe Ia) is expected to be a
close binary system of a carbon/oxygen white dwarf (WD) and a non-degenerate
star or another WD. Here, we present results from a high-cadence monitoring
observation of SN 2021hpr in a spiral galaxy, NGC 3147, and constraints on the
progenitor system based on its early multi-color light curve data. First, we
classify SN 2021hpr as a normal SN Ia from its long-term photometric and
spectroscopic data. More interestingly, we found a significant "early excess"
in the light curve over a simple power-law evolution. The early
light curve evolves from blue to red and blue during the first week. To explain
this, we fitted the early part of -band light curves with a two-component
model of the ejecta-companion interaction and a simple power-law model. The
early excess and its color can be explained by shock cooling emission due to a
companion star having a radius of . We also examined
HST pre-explosion images with no detection of a progenitor candidate,
consistent with the above result. However, we could not detect signs of a
significant amount of the stripped mass from a non-degenerate companion star
( for H emission). The early excess light in
the multi-band light curve supports a non-degenerate companion in the
progenitor system of SN 2021hpr. At the same time, the non-detection of
emission lines opens a door for other methods to explain this event.Comment: 26 pages, 13 figures + appendix, Accepted for publication in Ap
- …