8,795 research outputs found
A Memristor Model with Piecewise Window Function
In this paper, we present a memristor model with piecewise window function, which is continuously differentiable and consists of three nonlinear pieces. By introducing two parameters, the shape of this window function can be flexibly adjusted to model different types of memristors. Using this model, one can easily obtain an expression of memristance depending on charge, from which the numerical value of memristance can be readily calculated for any given charge, and eliminate the error occurring in the simulation of some existing window function models
Interaction induced topological phase transition in Bernevig-Hughes-Zhang model
We study interaction induced topological phase transition in
Bernevig-Hughes-Zhang model. Topological nature of the phase transition is
revealed by directly calculating the Z2 index of the interacting system from
the single-particle Green's function. The interacting Z2 index is also
consistently checked through the edge spectra. Combined with ab initio methods,
present approach is a useful tool searching for correlated topological
insulating materials from the first-principle point of view.Comment: 4.5 pages, 4 figures, reference adde
Thermodynamics of the Mg-B system: Implications for the deposition of MgB2 thin films
We have studied thermodynamics of the Mg-B system with the modeling technique
CALPHAD using a computerized optimization procedure. Temperature-composition,
pressure-composition, and pressure-temperature phase diagrams under different
conditions are obtained. The results provide helpful insights into appropriate
processing conditions for thin films of the superconducting phase, MgB2,
including the identification of the pressure/temperature region for
adsorption-controlled growth. Due to the high volatility of Mg, MgB2 is
thermodynamically stable only under fairly high Mg overpressures for likely
growth temperatures. This constraint places severe temperature constraints on
deposition techniques employing high vacuum conditions
Pole expansion of self-energy and interaction effect on topological insulators
We study effect of interactions on time-reversal-invariant topological
insulators. Their topological indices are expressed by interacting Green's
functions. Under the local self-energy approximation, we connect topological
index and surface states of an interacting system to an auxiliary
noninteracting system, whose Hamiltonian is related to the pole-expansions of
the local self-energy. This finding greatly simplifies the calculation of
interacting topological indices and gives an noninteracting pictorial
description of interaction driven topological phase transitions. Our results
also bridge studies of the correlated topological insulating materials with the
practical dynamical-mean-field-theory calculations.Comment: 4.2 pages, 3 figures, reference added, typos correcte
Nonlinear Near-Field Microwave Microscope For RF Defect Localization in Superconductors
Niobium-based Superconducting Radio Frequency (SRF) cavity performance is
sensitive to localized defects that give rise to quenches at high accelerating
gradients. In order to identify these material defects on bulk Nb surfaces at
their operating frequency and temperature, it is important to develop a new
kind of wide bandwidth microwave microscopy with localized and strong RF
magnetic fields. By taking advantage of write head technology widely used in
the magnetic recording industry, one can obtain ~200 mT RF magnetic fields,
which is on the order of the thermodynamic critical field of Nb, on submicron
length scales on the surface of the superconductor. We have successfully
induced the nonlinear Meissner effect via this magnetic write head probe on a
variety of superconductors. This design should have a high spatial resolution
and is a promising candidate to find localized defects on bulk Nb surfaces and
thin film coatings of interest for accelerator applications.Comment: 4 pages, 6 figures Journal-ref: 2010 Applied Superconductivity
Conferenc
- …