240 research outputs found
Comprehensive experimental performance analysis of DSR, AODV and DSDV routing protocol for different metrics values with predefined constraints
A Mobile Adhoc Network is a multi-hop self-configuring network without any fixed infrastructure. Due to mobility of nodes, dynamic topology and highly dynamic environment, designing and implementing stable routing in Mobile Ad-hoc Networking is a major challenge and a critical issue. This paper analyses the performance analysis of on demand routing protocol, Dynamic Source Routing (DSR), Adhoc on Demand Distance Vector Routing (AODV) and table driven protocol, Destination-Sequenced Distance Vectoring (DSDV) using a network simulator NS2. Different types of test scenario have designed with fixed number of nodes but varying mobility. Different performance metric values like, throughput, delay, normalized network load, end to end delay, dropped packets, packets delivery ratio have been observed. The experimental results have been analysed and recommendation based on the obtained results has been proposed about the significance of each protocol in different scenarios and situations. The simulation results show that both protocols are good in performance in their own categories. We believe that findings of this paper will help the researcher to find the best protocol under predefined condition with varied mobility. We believe that this research will help the researcher to identify and further investigate any particular metrics value of AODV, DSR and DSDV
Internet multimedia traffic classification from QoS perspective using semi-supervised dictionary learning models
To address the issue of finegrained classification of Internet multimedia traffic from a Quality of Service (QoS) perspective with a suitable granularity, this paper defines a new set of QoS classes and presents a modified K-Singular Value Decomposition (K-SVD) method for multimedia identification. After analyzing several instances of typical Internet multimedia traffic captured in a campus network, this paper defines a new set of QoS classes according to the difference in downstream/upstream rates and proposes a modified K-SVD method that can automatically search for underlying structural patterns in the QoS characteristic space. We define bag-QoS-words as the set of specific QoS local patterns, which can be expressed by core QoS characteristics. After the dictionary is constructed with an excess quantity of bag-QoS-words, Locality Constrained Feature Coding (LCFC) features of QoS classes are extracted. By associating a set of characteristics with a percentage of error, an objective function is formulated. In accordance with the modified K-SVD, Internet multimedia traffic can be classified into a corresponding QoS class with a linear Support Vector Machines (SVM) classifier. Our experimental results demonstrate the feasibility of the proposed classification method
TOA Estimation of Chirp Signal in Dense Multipath Environment for Low-Cost Acoustic Ranging
In this paper, a novel time of arrival (TOA) estimation method is proposed based on an iterative cleaning process to extract the first path signal. The purpose is to address the challenge in dense multipath indoor environments that the power of the first path component is normally smaller than other multipath components, where the traditional match filtering (MF)-based TOA estimator causes huge errors. Along with parameter estimation, the proposed process is trying to detect and extract the first path component by eliminating the strongest multipath component using a band-elimination filter in fractional Fourier domain at each iterative procedure. To further improve the stability, a slack threshold and a strict threshold are introduced. Six simple and easily calculated termination criteria are proposed to monitor the iterative process. When the iterative 'cleaning' process is done, the outputs include the enhanced first path component and its estimated parameters. Based on these outputs, an optimal reference signal for the MF estimator can be constructed, and a more accurate TOA estimation can be conveniently obtained. The results from numerical simulations and experimental investigations verified that, for acoustic chirp signal TOA estimation, the accuracy of the proposed method is superior to those obtained by the conventional MF estimators
Compressed sensing signal and data acquisition in wireless sensor networks and internet of things
The emerging compressed sensing (CS) theory can significantly reduce the number of sampling points that directly corresponds to the volume of data collected, which means that part of the redundant data is never acquired. It makes it possible to create standalone and net-centric applications with fewer resources required in Internet of Things (IoT). CS-based signal and information acquisition/compression paradigm combines the nonlinearreconstruction algorithm and random sampling on a sparsebasis that provides a promising approach to compress signal and data in information systems. This paper investigates how CS can provide new insights into data sampling and acquisition in wireless sensor networks and IoT. First, we briefly introduce the CS theory with respect to the sampling and transmission coordination during the network lifetime through providing a compressed sampling process with low computation costs. Then, a CS-based framework is proposed for IoT, in which the end nodes measure, transmit, and store the sampled data in the framework. Then, an efficient cluster-sparse reconstruction algorithm is proposed for in-network compression aiming at more accurate data reconstruction and lower energy efficiency. Performance is evaluated with respect to network size using datasets acquired by a real-life deployment
Exponentially weighted particle filter for simultaneous localization and mapping based on magnetic field measurements
This paper presents a simultaneous localization and mapping (SLAM) method that utilizes the measurement of ambient magnetic fields present in all indoor environments. In this paper, an improved exponentially weighted particle filter was proposed to estimate the pose distribution of the object and a Kriging interpolation method was introduced to update the map of the magnetic fields. The performance and effectiveness of the proposed algorithms were evaluated by simulations on MATLAB based on a map with magnetic fields measured manually in an indoor environment and also by tests on the mobile devices in the same area. From the tests, two interesting phenomena have been discovered; one is the shift of location estimation after sharp turning and the other is the accumulated errors. While the latter has been confirmed and investigated by a few researchers, the reason for the first one still remains unknown. The tests also confirm that the interpolated map by using the proposed method improves the localization accuracy
An integrated energy-efficient operation methodology for metro systems based on a real case of Shanghai Metro Line One
Metro systems are one of the most important transportation systems in people's lives. Due to the huge amount of energy it consumes every day, highly-efficient operation of a metro system will lead to significant energy savings. In this paper, a new integrated Energy-efficient Operation Methodology (EOM) for metro systems is proposed and validated. Compared with other energy saving methods, EOM does not incur additional cost. In addition, it provides solutions to the frequent disturbance problems in the metro systems. EOM can be divided into two parts: Timetable Optimization (TO) and Compensational Driving Strategy Algorithm (CDSA). First, to get a basic energy-saving effect, a genetic algorithm is used to modify the dwell time of each stop to obtain the most optimal energy-efficient timetable. Then, in order to save additional energy when disturbances happen, a novel CDSA algorithm is formulated and proposed based on the foregoing method. To validate the correctness and effectiveness of the energy-savings possible with EOM, a real case of Shanghai Metro Line One (SMLO) is studied, where EOM was applied. The result shows that a significant amount of energy can be saved by using EOM
An ensemble of VisNet, Transformer-M, and pretraining models for molecular property prediction in OGB Large-Scale Challenge @ NeurIPS 2022
In the technical report, we provide our solution for OGB-LSC 2022 Graph
Regression Task. The target of this task is to predict the quantum chemical
property, HOMO-LUMO gap for a given molecule on PCQM4Mv2 dataset. In the
competition, we designed two kinds of models: Transformer-M-ViSNet which is an
geometry-enhanced graph neural network for fully connected molecular graphs and
Pretrained-3D-ViSNet which is a pretrained ViSNet by distilling geomeotric
information from optimized structures. With an ensemble of 22 models, ViSNet
Team achieved the MAE of 0.0723 eV on the test-challenge set, dramatically
reducing the error by 39.75% compared with the best method in the last year
competition
- …