552 research outputs found

    Neural Graph Collaborative Filtering

    Full text link
    Learning vector representations (aka. embeddings) of users and items lies at the core of modern recommender systems. Ranging from early matrix factorization to recently emerged deep learning based methods, existing efforts typically obtain a user's (or an item's) embedding by mapping from pre-existing features that describe the user (or the item), such as ID and attributes. We argue that an inherent drawback of such methods is that, the collaborative signal, which is latent in user-item interactions, is not encoded in the embedding process. As such, the resultant embeddings may not be sufficient to capture the collaborative filtering effect. In this work, we propose to integrate the user-item interactions -- more specifically the bipartite graph structure -- into the embedding process. We develop a new recommendation framework Neural Graph Collaborative Filtering (NGCF), which exploits the user-item graph structure by propagating embeddings on it. This leads to the expressive modeling of high-order connectivity in user-item graph, effectively injecting the collaborative signal into the embedding process in an explicit manner. We conduct extensive experiments on three public benchmarks, demonstrating significant improvements over several state-of-the-art models like HOP-Rec and Collaborative Memory Network. Further analysis verifies the importance of embedding propagation for learning better user and item representations, justifying the rationality and effectiveness of NGCF. Codes are available at https://github.com/xiangwang1223/neural_graph_collaborative_filtering.Comment: SIGIR 2019; the latest version of NGCF paper, which is distinct from the version published in ACM Digital Librar

    How to Retrain Recommender System? A Sequential Meta-Learning Method

    Full text link
    Practical recommender systems need be periodically retrained to refresh the model with new interaction data. To pursue high model fidelity, it is usually desirable to retrain the model on both historical and new data, since it can account for both long-term and short-term user preference. However, a full model retraining could be very time-consuming and memory-costly, especially when the scale of historical data is large. In this work, we study the model retraining mechanism for recommender systems, a topic of high practical values but has been relatively little explored in the research community. Our first belief is that retraining the model on historical data is unnecessary, since the model has been trained on it before. Nevertheless, normal training on new data only may easily cause overfitting and forgetting issues, since the new data is of a smaller scale and contains fewer information on long-term user preference. To address this dilemma, we propose a new training method, aiming to abandon the historical data during retraining through learning to transfer the past training experience. Specifically, we design a neural network-based transfer component, which transforms the old model to a new model that is tailored for future recommendations. To learn the transfer component well, we optimize the "future performance" -- i.e., the recommendation accuracy evaluated in the next time period. Our Sequential Meta-Learning(SML) method offers a general training paradigm that is applicable to any differentiable model. We demonstrate SML on matrix factorization and conduct experiments on two real-world datasets. Empirical results show that SML not only achieves significant speed-up, but also outperforms the full model retraining in recommendation accuracy, validating the effectiveness of our proposals. We release our codes at: https://github.com/zyang1580/SML.Comment: Appear in SIGIR 202

    ABC: Adaptive, Biomimetic, Configurable Robots for Smart Farms - From Cereal Phenotyping to Soft Fruit Harvesting

    Get PDF
    Currently, numerous factors, such as demographics, migration patterns, and economics, are leading to the critical labour shortage in low-skilled and physically demanding parts of agriculture. Thus, robotics can be developed for the agricultural sector to address these shortages. This study aims to develop an adaptive, biomimetic, and configurable modular robotics architecture that can be applied to multiple tasks (e.g., phenotyping, cutting, and picking), various crop varieties (e.g., wheat, strawberry, and tomato) and growing conditions. These robotic solutions cover the entire perception–action–decision-making loop targeting the phenotyping of cereals and harvesting fruits in a natural environment. The primary contributions of this thesis are as follows. a) A high-throughput method for imaging field-grown wheat in three dimensions, along with an accompanying unsupervised measuring method for obtaining individual wheat spike data are presented. The unsupervised method analyses the 3D point cloud of each trial plot, containing hundreds of wheat spikes, and calculates the average size of the wheat spike and total spike volume per plot. Experimental results reveal that the proposed algorithm can effectively identify spikes from wheat crops and individual spikes. b) Unlike cereal, soft fruit is typically harvested by manual selection and picking. To enable robotic harvesting, the initial perception system uses conditional generative adversarial networks to identify ripe fruits using synthetic data. To determine whether the strawberry is surrounded by obstacles, a cluster complexity-based perception system is further developed to classify the harvesting complexity of ripe strawberries. c) Once the harvest-ready fruit is localised using point cloud data generated by a stereo camera, the platform’s action system can coordinate the arm to reach/cut the stem using the passive motion paradigm framework, as inspired by studies on neural control of movement in the brain. Results from field trials for strawberry detection, reaching/cutting the stem of the fruit with a mean error of less than 3 mm, and extension to analysing complex canopy structures/bimanual coordination (searching/picking) are presented. Although this thesis focuses on strawberry harvesting, ongoing research is heading toward adapting the architecture to other crops. The agricultural food industry remains a labour-intensive sector with a low margin, and cost- and time-efficiency business model. The concepts presented herein can serve as a reference for future agricultural robots that are adaptive, biomimetic, and configurable