59 research outputs found

    An interactive environment for teaching a watch crew to act properly in case of wind and wave perturbation

    Get PDF
    An interactive environment is supposed to be one of the most important technologies for developing teaching systems for a deck crew. It enables modeling different interworking scenarios (excursions) among marine crafts as well as responding maritime facilities to operator performance, etc. The ship crew is possible to be taught in order to know how to act effectively in alarm or challenging situations in such an environment. A virtual polygon can also be used as a decision making support system to forecast growing threats and then choose the best behavior strategy/policy. The paper illustrates the findings of a virtual polygon development for simulating navigation safety problems with Blender environment applied for a three-dimensional graphic image representation, Delphi programming language for software support of the developed methods and a user interface design. The authors explained a layout algorithm for constructing three-dimensional offshore surface vessels. Moreover, the researchers simulated various situations in different weather effects and wind and wave perturbation in their study

    The Mu2e Crystal Calorimeter: An Overview

    Get PDF
    The Mu2e experiment at Fermilab will search for the standard model-forbidden, charged lepton flavour-violating conversion of a negative muon into an electron in the field of an aluminium nucleus. The distinctive signal signature is represented by a mono-energetic electron with an energy near the muon's rest mass. The experiment aims to improve the current single-event sensitivity by four orders of magnitude by means of a high-intensity pulsed muon beam and a high-precision tracking system. The electromagnetic calorimeter complements the tracker by providing high rejection power in muon to electron identification and a seed for track reconstruction while working in vacuum in presence of a 1 T axial magnetic field and in a harsh radiation environment. For 100 MeV electrons, the calorimeter should achieve: (a) a time resolution better than 0.5 ns, (b) an energy resolution <10%, and (c) a position resolution of 1 cm. The calorimeter design consists of two disks, each loaded with 674 undoped CsI crystals read out by two large-area arrays of UV-extended SiPMs and custom analogue and digital electronics. We describe here the status of construction for all calorimeter components and the performance measurements conducted on the large-sized prototype with electron beams and minimum ionizing particles at a cosmic ray test stand. A discussion of the calorimeter's engineering aspects and the on-going assembly is also reported

    Mu2e Crystal Calorimeter Readout Electronics: Design and Characterisation

    Get PDF
    The Mu2e experiment at Fermi National Accelerator Laboratory will search for the charged-lepton flavour-violating neutrinoless conversion of negative muons into electrons in the Coulomb field of an Al nucleus. The conversion electron with a monoenergetic 104.967 MeV signature will be identified by a complementary measurement carried out by a high-resolution tracker and an electromagnetic calorimeter, improving by four orders of magnitude the current single-event sensitivity. The calorimeter—composed of 1348 pure CsI crystals arranged in two annular disks—has a high granularity, 10% energy resolution and 500 ps timing resolution for 100 MeV electrons. The readout, based on large-area UV-extended SiPMs, features a fully custom readout chain, from the analogue front-end electronics to the digitisation boards. The readout electronics design was validated for operation in vacuum and under magnetic fields. An extensive radiation hardness certification campaign certified the FEE design for doses up to 100 krad and 1012 n1MeVeq/cm2 and for single-event effects. A final vertical slice test on the final readout chain was carried out with cosmic rays on a large-scale calorimeter prototype


    No full text
    The process of K*99+ approaches pi *99oe*99+ nu decay is investigated in the paper aiming at the increase of the coordinate and power resolution of a hodoscopic electromagnetic collaider and the modelling of calibration methods of calorimeters for collaider plants. The experimental investigation of K*99+-decays has been held with the use of electrodeless drift chambers. As a result the most exact value of an inclination parameter for a vector form-factor lambda *00+ in K*99+ approaches pi *99oe*99+ nu decays has been obtained. The system of electrodeless drift chambers for the work on accelerators has been created as well as a detailed calculation model of SDC plant calorimeters for calculations of Monte-Carlo. The system of electrodeless drift chambers has been introduced into operationAvailable from VNTIC / VNTIC - Scientific & Technical Information Centre of RussiaSIGLERURussian Federatio
    • …