6,621 research outputs found
Challenging the empire
This paper considers how Paul Gilroy transformed hitherto dominant understandings of the relationship between race and class by developing an innovative account that foregrounded questions of racist oppression and collective resistance amid the organic crisis of British capitalism. The returns from this rethinking were profound in that he was able to make transparent both the structuring power of racism within the working class, and the necessity for autonomous black resistance. At the same time, significant lacunae in his account are identified, including the neglect of the episodic emergence of working-class anti-racism and the part played by socialists, particularly those of racialized minority descent in fashioning a major anti-racist social movement. The paper concludes with a lament for the disappearance of such work informed by a âMarxism without guaranteesâ in the contemporary field of racism studies, and asks readers to consider the gains to be derived from such a re-engagement
Locating Community among People with Schizophrenia living in a Diverse Urban Environment
Increasing the community participation of people with severe mental illness is a primary goal of recovery-oriented services. Despite this emphasis, the construct of community remains understudied and poorly articulated. This study provides an in-depth examination of the experiences, beliefs, behaviors, and spaces that constitute community participation for a highly diverse group of people with schizophrenia who are urban dwellers. An in-depth, longitudinal qualitative design was employed with 30 individuals with schizophrenia residing in inner-city neighborhoods in Canadaâs largest city. For these individuals, community participation is a dynamic process, shaped by illness and non-illness-associated social relationships and spaces, self-concept, and the resources accessible to the person. The complexity of factors that are associated with âcommunityâ for people with schizophrenia, with overlays of culture, poverty, victimization, and discrimination, calls for a critical examination of the community rhetoric employed in practice and policy contexts
Herschel-ATLAS/GAMA: A difference between star formation rates in strong-line and weak-line radio galaxies
We have constructed a sample of radio-loud objects with optical spectroscopy from the Galaxy and Mass Assembly (GAMA) project over the Herschel Astrophysical Terahertz Large Area Survey (Herschel-ATLAS) Phase 1 fields. Classifying the radio sources in terms of their optical spectra, we find that strong-emission-line sources ('high-excitation radio galaxies') have, on average, a factor of ~4 higher 250-ÎŒm Herschel luminosity than weak-line ('lowexcitation') radio galaxies and are also more luminous than magnitude-matched radio-quiet galaxies at the same redshift. Using all five H-ATLAS bands, we show that this difference in luminosity between the emission-line classes arises mostly from a difference in the average dust temperature; strong-emission-line sources tend to have comparable dust masses to, but higher dust temperatures than, radio galaxies with weak emission lines. We interpret this as showing that radio galaxies with strong nuclear emission lines are much more likely to be associated with star formation in their host galaxy, although there is certainly not a one-to-one relationship between star formation and strong-line active galactic nuclei (AGN) activity. The strong-line sources are estimated to have star formation rates at least a factor of 3-4 higher than those in the weak-line objects. Our conclusion is consistent with earlier work, generally carried out using much smaller samples, and reinforces the general picture of high-excitation radio galaxies as being located in lower-mass, less evolved host galaxies than their low-excitation counterparts.Peer reviewe
Production of Scalar Higgs Bosons Associated with Boson at the CERN LHC in the MSSM
We investigate the associated production of a scalar Higgs boson ( or
) with boson in the minimal supersymmetric extension of the standard
model (MSSM) at the CERN Large Hadron Collider (LHC), including the
contributions from annihilation at the tree level and gluon fusion
via quark and squark loops. We quantitatively analyze the total cross sections
in the mSUGRA scenario. For the production of associated with , we
find that in most of the parameter regions, the contributions from initial
and are at a level of one percent of the total cross section
and therefore almost insignificant. For the production of associated with
, the contributions from channel can be much larger than those
from light quark initial states. Especially for large , the
increment can reach about one order of magnitude. Thus, when considering the
associated production of and at the LHC, the contributions from
annihilation should be taken into account seriously.Comment: 19 pages, 8 figures, RevTeX4; one reference added, minor changes,
conclusion unchanged; Journal-ref adde
An LSTM-based Network Slicing Classification Future Predictive Framework for Optimized Resource Allocation in C-V2X
With the advent of 5G communication networks, many novel areas of research have emerged and the spectrum of communicating objects has been diversified. Network Function Virtualization (NFV), and Software Defined Networking (SDN), are the two broader areas that are tremendously being explored to optimize the network performance parameters. Cellular Vehicle-to-Everything (C-V2X) is one such example of where end-to-end communication is developed with the aid of intervening network slices. Adoption of these technologies enables a shift towards Ultra-Reliable Low-Latency Communication (URLLC) across various domains including autonomous vehicles that demand a hundred percent Quality of Service (QoS) and extremely low latency rates. Due to the limitation of resources to ensure such communication requirements, telecom operators are profoundly researching software solutions for network resource allocation optimally. The concept of Network Slicing (NS) emerged from such end-to-end network resource allocation where connecting devices are routed toward the suitable resources to meet their requirements. Nevertheless, the bias, in terms of finding the best slice, observed in the network slices renders a non-optimal distribution of resources. To cater to such issues, a Deep Learning approach has been developed in this paper. The incoming traffic has been allocated network slices based on data-driven decisions as well as predictive network analysis for the future. A Long Short Term Memory (LSTM) time series prediction approach has been adopted that renders optimal resource utilization, lower latency rates, and high reliability across the network. The model will further ensure packet prioritization and will retain resource margin for crucial ones
On the Performance of a Photonic Reconfigurable Electromagnetic Band Gap Antenna Array for 5G Applications
In this paper, a reconfigurable Multiple-Input Multiple-Output (MIMO) antenna array is presented for 5G portable devices. The proposed array consists of four radiating elements and an Electromagnetic Band Gap (EBG) structure. Planar monopole radiating elements are employed in the array with Coplanar Waveguide Ports (CWPs). Each CWP is grounded on one side to a reflecting L-shaped structure that has an effect of improving the antennaâs directivity. It is shown that by inductively connecting Minkowski fractal structure of 1st order to the radiating element, the impedance matching is improved that results in enhancement in the arrayâs bandwidth performance. The EBG structure is used to provide the isolation between antenna elements in the MIMO array. The fractal structure is connected to the L-shaped reflector through four photosensitive light dependent resistor (LDR) switches. The effect of various LDR switching configurations on the performance of the antenna is investigated. The proposed array provides a novel performance in terms of S-parameters with enhancements in the radiation properties. Such enhancements are achieved with low separation gaps between antenna elements (about λo/16 at 3.5 GHz). It is shown that the arrayâs operational bands centered at 3.5 GHz and 4.65 GHz can be selected by activating certain LDR switches. The electromagnetic exposure of the array on the human body is investigated by determining the specific absorption rate (SAR). It is found that the proposed antenna shows lower SAR values compared to other antennas reported in literature. With the proposed EBG structure, the gain of the array is increased 7.5 dB (from -3.5 dBi to +4 dBi) at 3.5 GHz and by 14.3 dB (from -8.7 dBi to + 5.6 dBi) at 4.65 GHz. The average radiation efficiency between 3.5 GHz and 5.5 GHz increased by 42% from 20% to 62%. Excellent radiation characteristics of the EBG the array makes it suitable for 5G portable devices such as tablets
Design of a Planar Sensor Based on Split-Ring Resonators for Non-Invasive Permittivity Measurement
The permittivity of a material is an important parameter to characterize the degree of polarization of a material and identify components and impurities. This paper presents a non-invasive measurement technique to characterize materials in terms of their permittivity based on a modified metamaterial unit-cell sensor. The sensor consists of a complementary split-ring resonator (C-SRR), but its fringe electric field is contained with a conductive shield to intensify the normal component of the electric field. It is shown that by tightly electromagnetically coupling opposite sides of the unit-cell sensor to the input/output microstrip feedlines, two distinct resonant modes are excited. Perturbation of the fundamental mode is exploited here for determining the permittivity of materials. The sensitivity of the modified metamaterial unit-cell sensor is enhanced four-fold by using it to construct a tri-composite split-ring resonator (TC-SRR). The measured results confirm that the proposed technique provides an accurate and inexpensive solution to determine the permittivity of materials
Education policy as an act of white supremacy: whiteness, critical race theory and education reform
The paper presents an empirical analysis of education policy in England that is informed by recent developments in US critical theory. In particular, I draw on âwhiteness studiesâ and the application of Critical Race Theory (CRT). These perspectives offer a new and radical way of conceptualising the role of racism in education. Although the US literature has paid little or no regard to issues outside North America, I argue that a similar understanding of racism (as a multifaceted, deeply embedded, often taken-for-granted aspect of power relations) lies at the heart of recent attempts to understand institutional racism in the UK. Having set out the conceptual terrain in the first half of the paper, I then apply this approach to recent changes in the English education system to reveal the central role accorded the defence (and extension) of race inequity. Finally, the paper touches on the question of racism and intentionality: although race inequity may not be a planned and deliberate goal of education policy neither is it accidental. The patterning of racial advantage and inequity is structured in domination and its continuation represents a form of tacit intentionality on the part of white powerholders and policy makers. It is in this sense that education policy is an act of white supremacy. Following others in the CRT tradition, therefore, the paperâs analysis concludes that the most dangerous form of âwhite supremacyâ is not the obvious and extreme fascistic posturing of small neonazi groups, but rather the taken-for-granted routine privileging of white interests that goes unremarked in the political mainstream
- âŠ