65 research outputs found

    An Approximate Bayesian Long Short-Term Memory Algorithm for Outlier Detection

    Full text link
    Long Short-Term Memory networks trained with gradient descent and back-propagation have received great success in various applications. However, point estimation of the weights of the networks is prone to over-fitting problems and lacks important uncertainty information associated with the estimation. However, exact Bayesian neural network methods are intractable and non-applicable for real-world applications. In this study, we propose an approximate estimation of the weights uncertainty using Ensemble Kalman Filter, which is easily scalable to a large number of weights. Furthermore, we optimize the covariance of the noise distribution in the ensemble update step using maximum likelihood estimation. To assess the proposed algorithm, we apply it to outlier detection in five real-world events retrieved from the Twitter platform

    Optimal Data Split Methodology for Model Validation

    Full text link
    The decision to incorporate cross-validation into validation processes of mathematical models raises an immediate question - how should one partition the data into calibration and validation sets? We answer this question systematically: we present an algorithm to find the optimal partition of the data subject to certain constraints. While doing this, we address two critical issues: 1) that the model be evaluated with respect to predictions of a given quantity of interest and its ability to reproduce the data, and 2) that the model be highly challenged by the validation set, assuming it is properly informed by the calibration set. This framework also relies on the interaction between the experimentalist and/or modeler, who understand the physical system and the limitations of the model; the decision-maker, who understands and can quantify the cost of model failure; and the computational scientists, who strive to determine if the model satisfies both the modeler's and decision maker's requirements. We also note that our framework is quite general, and may be applied to a wide range of problems. Here, we illustrate it through a specific example involving a data reduction model for an ICCD camera from a shock-tube experiment located at the NASA Ames Research Center (ARC).Comment: Submitted to International Conference on Modeling, Simulation and Control 2011 (ICMSC'11), San Francisco, USA, 19-21 October, 201

    From Causal Pairs to Causal Graphs

    Full text link
    Causal structure learning from observational data remains a non-trivial task due to various factors such as finite sampling, unobserved confounding factors, and measurement errors. Constraint-based and score-based methods tend to suffer from high computational complexity due to the combinatorial nature of estimating the directed acyclic graph (DAG). Motivated by the `Cause-Effect Pair' NIPS 2013 Workshop on Causality Challenge, in this paper, we take a different approach and generate a probability distribution over all possible graphs informed by the cause-effect pair features proposed in response to the workshop challenge. The goal of the paper is to propose new methods based on this probabilistic information and compare their performance with traditional and state-of-the-art approaches. Our experiments, on both synthetic and real datasets, show that our proposed methods not only have statistically similar or better performances than some traditional approaches but also are computationally faster.Comment: ICMLA 202

    Validating Predictions of Unobserved Quantities

    Full text link
    The ultimate purpose of most computational models is to make predictions, commonly in support of some decision-making process (e.g., for design or operation of some system). The quantities that need to be predicted (the quantities of interest or QoIs) are generally not experimentally observable before the prediction, since otherwise no prediction would be needed. Assessing the validity of such extrapolative predictions, which is critical to informed decision-making, is challenging. In classical approaches to validation, model outputs for observed quantities are compared to observations to determine if they are consistent. By itself, this consistency only ensures that the model can predict the observed quantities under the conditions of the observations. This limitation dramatically reduces the utility of the validation effort for decision making because it implies nothing about predictions of unobserved QoIs or for scenarios outside of the range of observations. However, there is no agreement in the scientific community today regarding best practices for validation of extrapolative predictions made using computational models. The purpose of this paper is to propose and explore a validation and predictive assessment process that supports extrapolative predictions for models with known sources of error. The process includes stochastic modeling, calibration, validation, and predictive assessment phases where representations of known sources of uncertainty and error are built, informed, and tested. The proposed methodology is applied to an illustrative extrapolation problem involving a misspecified nonlinear oscillator
    • …
    corecore