31,500 research outputs found

    Determining the luminosity function of Swift long gamma-ray bursts with pseudo-redshifts

    Full text link
    The determination of luminosity function (LF) of gamma-ray bursts (GRBs) is of an important role for the cosmological applications of the GRBs, which is however hindered seriously by some selection effects due to redshift measurements. In order to avoid these selection effects, we suggest to calculate pseudo-redshifts for Swift GRBs according to the empirical L-E_p relationship. Here, such a Lβˆ’EpL-E_p relationship is determined by reconciling the distributions of pseudo- and real redshifts of redshift-known GRBs. The values of E_p taken from Butler's GRB catalog are estimated with Bayesian statistics rather than observed. Using the GRB sample with pseudo-redshifts of a relatively large number, we fit the redshift-resolved luminosity distributions of the GRBs with a broken-power-law LF. The fitting results suggest that the LF could evolve with redshift by a redshift-dependent break luminosity, e.g., L_b=1.2\times10^{51}(1+z)^2\rm erg s^{-1}. The low- and high-luminosity indices are constrained to 0.8 and 2.0, respectively. It is found that the proportional coefficient between GRB event rate and star formation rate should correspondingly decrease with increasing redshifts.Comment: 5 pages, 5 figures, accepted for publication in ApJ
    • …