33 research outputs found

    Certainty Factor-based Expert System for Meat Classification within an Enterprise Resource Planning Framework

    Get PDF
    The demand for halal products in the Islamic context continues to be high, requiring adherence to halal and haram laws in consuming food and beverages. However, individuals face the challenge of distinguishing between haram meat and permissible halal meat. This study aims to answer these challenges by designing an expert system application within the ERP framework to increase the usability functionality of the system that can differentiate between beef, pork, or a mixture of both based on the physical characteristics of the meat. The aim is to determine halal products permissible for consumption by Muslims. The research methodology includes a data collection process that involves taking 30 meat samples from various sources, and the criteria used to classify the meat will be determined based on an analysis of the physical characteristics of the meat. System administrators use expert systems to ensure proper treatment of meat during administration processes, including separating halal beef from pork and implementing different inventory procedures. The Certainty Factor (CF) inference engine deals with uncertainty even though the expert system's accuracy level is relatively good with several rules. However, these results must be studied further because the plan relies on expert opinion. Therefore, it is necessary to set the correct CF value for accurate height classification. The CF inference engine facilitates reasoned conclusions in meat classification. Functional testing confirms the smooth running of the system, validating its reliability and performance. In addition, the expert system accuracy assessment produces a commendable accuracy rate of 90%. In addition, the expert system works powerfully on various meat samples, accurately classifying meat types with high precision. This study explicitly highlights the expert system's design for meat classification in determining halal products by using the Expert System Certainty Factor. In conclusion, this expert system provides an efficient and reliable approach to classifying meat and supports the production and consumption of Halal products according to Islamic principles

    Ekspansi Kueri pada Sistem Temu Kembali Informasi Berbahasa Indonesia Menggunakan Analisis Konteks Lokal

    Get PDF
    Pengguna suatu sistem temu kembali sering kali tidak tepat mengungkapkan kebutuhan informasi yang diinginkannya dalam bentuk kueri. Masalah lain ialah adanya perbedaan pilihan kata antara seorang pengguna dalam kuerinya dan penulis dalam dokumennya. Analisis konteks lokal adalah ekspansi kueri otomatis yang mengombinasikan teknik global dan teknik lokal. Analisis konteks lokal mengurutkan konsep berdasarkan pada kemunculannya dengan seluruh term kueri pada dokumen peringkat teratas dan menggunakan konsep peringkat teratas untuk ekspansi kueri. Pada dasarnya suatu dokumen mempunyai beberapa topik sehingga pada penelitian ini dokumen peringkat teratas dibagi ke dalam beberapa passage. Konsep peringkat teratas diambil dari beberapa passage peringkat teratas. Tujuan penelitian ini ialah mengimplementasikan ekspansi kueri menggunakan analisis konteks lokal. Kinerja dari sistem temu kembali informasi menggunakan analisis konteks lokal bagus dengan nilai ketepatan rata-rata sebesar 60%. Hasil penelitian menunjukkan bahwa kinerja sistem dengan analisis konteks lokal secara signifikan meningkat 6.07% dibandingkan dengan sistem tanpa analisis konteks lokal dengan dokumen-dokumen relevan yang ditemukembalikan berada pada posisi teratas penemukembalian. Selain itu, jumlah dokumen dan passage peringkat teratas yang terambil secara signifikan tidak mempengaruhi nilai ketepatan rata-rata. Faktor yang lebih mempengaruhi adalah jumlah term ekspansi yang ditambahkan. Analisis konteks lokal cukup baik diterapkan pada koleksi dokumen yang memiliki kemiripan cukup tinggi.Kata kunci: analisis konteks lokal, ekspansi kuer

    Pengembangan Sistem Manajemen Pengetahuan di Organisasi Asosiasi Alumni Program Beasiswa Amerika - Indonesia (ALPHA-I)

    Get PDF
    Organisasi ALPHA-I (Asosiasi Alumni Program Beasiswa Amerika – Indonesia) memiliki anggota lebih dari 400 orang yang tersebar di sepuluh daerah di Indonesia. Jumlah alumni penerima beasiswa pendidikan dari United States Agency for International Development (USAID) akan bertambah setiap tahun dan akan tergabung di organisasi ini. Hasil observasi menunjukkan bahwa organisasi ALPHA-I memiliki dua masalah utama. Permasalahan pertama adalah ALPHA-I belum menyediakan sarana berbagi pengetahuan tacit pada lima fokus bidang beasiswa USAID. Permasalahan kedua adalah pengetahuan explicit karyawan seperti Standar Operasional Prosedur (SOP), laporan kegiatan, laporan hasil rapat, daftar mitra dan dokumen penting lainnya yang masih dibukukan. Permasalahan tersebut dapat diselesaikan dengan membuat sistem manajemen pengetahuan. Tujuan penelitian ini adalah mengembangkan sistem manajemen pengetahuan yang dapat memudahkan proses menangkap, mengembangkan, membagikan, dan memanfaatkan pengetahuan tacit alumni dan pengetahuan explicit karyawan di organisasi ini. Penelitian ini dilakukan dengan menggunakan metode Knowledge Management System Life Cycle (KMSLC). Hasil dari penelitian ini adalah sistem manajemen pengetahuan yang dibangun dengan framework PHP dan MySQL sebagai Relational Database Management System (RDBMS) berbasis website. Hasil pengujian Black box dari 36 kasus uji yang telah dilakukan menyatakan bahwa semua fungsi pada sistem berjalan sesuai dengan perintah yang diberikan. AbstractThe ALPHA-I Organization (Alumni Association of US - Indonesia Scholarship Programs) has more than 400 members that have spread in ten regions (chapters) in Indonesia. The number of alumni who receive educational scholarships from United States Agency for International Development (USAID) will increase every year and will join this organization. The result of observation to ALPHA-I organization showed that there are two main problems. The first problem is ALPHA-I organization did not provide equipment for the alumni to share their tacit knowledge on five focused areas of USAID scholarships. The second problem is the explicit knowledge of employees to record the Standard Operational Procedure (SOP), activity reports, meeting report, partner list, and other relevant documents were written by books. These problems can be solved by creating a knowledge management system. The purpose of this study is to develop a knowledge management system that can facilitate the process of creation, development, share, and utilize tacit knowledge of alumni and explicit knowledge of employees at ALPHA-I. This research was conducted using the Knowledge Management System Life Cycle (KMSLC) method. The result of this study was a knowledge management system that was built with PHP framework and MySQL-as a Relational Database Management System (RDBMS) based on website. The result of black box testing from 36 case studies demonstrated that all functions in the system run according to the commands given

    Sistem Rekomendasi Dua Arah untuk Pemilihan Dosen Pembimbing Menggunakan Data Histori dan Skyline View Queries

    Get PDF
    Pemilihan dosen pembimbing merupakan salah satu faktor yang mempengaruhi proses penyelesaian tugas akhir. Pada mekanisme pemilihan dosen pembimbing, sering kali mahasiswa sendiri belum memahami dengan jelas kemampuan dirinya serta topik apa yang akan dipilihnya, sehingga nama calon dosen pembimbing yang diusulkan mahasiswa umumnya belum mempertimbangkan hal tersebut. Mekanisme seperti ini juga menyebabkan terjadinya penumpukan calon bimbingan pada dosen tertentu dan kekurangan bimbingan pada dosen yang lain, meskipun keduanya memiliki latar belakang keilmuan yang mirip.  Pada saat yang sama, umumnya dosen pembimbing tidak pernah ditanya preferensinya terhadap mahasiswa seperti apa yang sesuai untuk topik penelitian yang akan ditawarkan. Sistem rekomendasi yang ada biasanya hanya mempertimbangkan preferensi salah satu pihak saja, dari sisi dosen saja ataupun sisi mahasiswa saja. Penelitian ini membangun sistem rekomendasi dua arah baik dari sisi dosen maupun dari sisi mahasiswa menggunakan skyline view queries. Skyline view queries merekomendasikan dosen yang dominan kepada mahasiswa sesuai dengan preferensi mahasiswa, dan merekomendasikan mahasiswa yang dominan kepada dosen sesuai dengan preferensi dosen. Untuk mendapatkan preferensi dari kedua sisi, digunakan teknik text mining dan clustering pada data histori nilai akademik dan topik penelitian dari mahasiswa yang sudah lulus sebagai acuan untuk mahasiswa yang akan memilih dosen pembimbing. Hasil percobaan menunjukkan bahwa  penggabungan metode skyline view queries dengan profil akademik dan data histori dapat mengatasi permasalahan penumpukan calon bimbingan pada dosen tertentu serta dapat memberikan rekomendasi yang sesuai dengan kemampuan akademik dan preferensi mahasiswa dan dosen. AbstractSelection of thesis supervisor is a factor that have an effect on the final thesis process. In the process of choosing thesis supervisor, student often has not clearly recognize his/her capability and topic that will be researched. Therefore, this issue is likely not considered when the student propose his/her thesis supervisor. This selection process typically also makes one supervisor is proposed by many student while other supervisor is proposed by less student, even though both supervisor has similar scientific background. At the same time, generally the thesis supervisor has never been asked his/her student preferences related to the supervisor’s research topics. Existing recommendation systems usually consider preferences from one party, either supervisor’s or student’s preferences. This research develop a two-way recommendation system, considering both supervisor’s and student’s preferences using skyline view queries. Skyline view queries recommend dominant supervisor to student based on student’s preferences, and recommend dominant student to supervisor based on supervisor’s preferences. To acquire preferences from both party, text mining techniques and clustering is used on student’s historical academic scores data and data of research topics from graduated student as reference for student in choosing thesis supervisor. Experiment results show that using skyline view queries method on student’s academic profile and historical data can overcome the issue of one supervisor is proposed by too many students. In addition, the results shows that the method can also give appropriate recommendation based on student’s academic portfolio and student’s and supervisor’s preferences

    Certainty Factor-based Expert System for Meat Classification within an Enterprise Resource Planning Framework

    Get PDF
    The demand for halal products in the Islamic context continues to be high, requiring adherence to halal and haram laws in consuming food and beverages. However, individuals face the challenge of distinguishing between haram meat and permissible halal meat. This study aims to answer these challenges by designing an expert system application within the ERP framework to increase the usability functionality of the system that can differentiate between beef, pork, or a mixture of both based on the physical characteristics of the meat. The aim is to determine halal products permissible for consumption by Muslims. The research methodology includes a data collection process that involves taking 30 meat samples from various sources, and the criteria used to classify the meat will be determined based on an analysis of the physical characteristics of the meat. System administrators use expert systems to ensure proper treatment of meat during administration processes, including separating halal beef from pork and implementing different inventory procedures. The Certainty Factor (CF) inference engine deals with uncertainty even though the expert system's accuracy level is relatively good with several rules. However, these results must be studied further because the plan relies on expert opinion. Therefore, it is necessary to set the correct CF value for accurate height classification. The CF inference engine facilitates reasoned conclusions in meat classification. Functional testing confirms the smooth running of the system, validating its reliability and performance. In addition, the expert system accuracy assessment produces a commendable accuracy rate of 90%. In addition, the expert system works powerfully on various meat samples, accurately classifying meat types with high precision. This study explicitly highlights the expert system's design for meat classification in determining halal products by using the Expert System Certainty Factor. In conclusion, this expert system provides an efficient and reliable approach to classifying meat and supports the production and consumption of Halal products according to Islamic principles

    Classification Model of Sugarcane Growth Phase from Multi-temporal Sentinel 1 Imagery Using Random Forest Algorithm

    Get PDF
    The Special Region of Yogyakarta, a designated sugarcane center, demands special attention for effective extensification efforts, necessitating spatial insights into sugarcane farming. Monitoring of sugarcane fields served to obtain information on the growth phases of sugarcane and its distribution for agricultural extensification strategies. For this reason, it is necessary to carry out image classification using the Random Forest reliable algorithm to classify sugarcane growth phases in multi-temporal Sentinel 1 images. The sugarcane planting calendar Map is conducted from the image classification outcomes and then tested for its accuracy for evaluation. The classification process involves analyzing each image captured monthly throughout 2020, with a dataset comprising 9690 sample pixels across six classification classes: buildings, vegetation, water bodies, rice fields, sugarcane phase class 1, and sugarcane phase class 2. The results show that the Sentinel 1 image consisting of 13 images has an average classification model accuracy of 65.38%. Notably, the image classification achieved its pinnacle performance in October, boasting the highest overall accuracy level at 73.33%, accompanied by an RMSE value of 2.05.Daerah Istimewa Yogyakarta yang telah ditetapkan sebagai kawasan sentra tebu memerlukan perlakuan khusus dalam upaya ekstensifikasi yang memerlukan informasi spasial usaha tani tebu. Pemantauan lahan tebu dilakukan untuk mendapatkan informasi fase pertumbuhan tebu dan sebarannya untuk strategi ekstensifikasi pertanian. Oleh karena itu perlu dilakukan klasifikasi citra menggunakan algoritma random forest yang reliable untuk mengklasifikasikan fase pertumbuhan tebu pada citra Sentinel 1 multi-temporal. Peta kalender tanam tebu dibuat dari hasil klasifikasi citra yang telah dilakukan dan menguji tingkat akurasi untuk evaluasi. Klasifikasi dilakukan dengan setiap citra pada setiap bulan yang terekam sepanjang tahun 2020. Data citra yang digunakan sebanyak 9690 sampel piksel yang terdiri atas 6 kelas klasifikasi yaitu bangunan, vegetasi, badan air, sawah, tebu kelas fase 1, dan kelas fase tebu 2. Hasil uji model klasifikasi menunjukkan bahwa Citra Sentinel 1 yang terdiri atas 13 citra memiliki akurasi model rata-rata yaitu 65.38%. Hasil klasifikasi citra yang memiliki tingkat akurasi keseluruhan tertinggi senilai 73.33% dengan nilai RMSE 2.05 terjadi pada bulan Oktober

    Analisis Sentimen Bahasa Indonesia pada Twitter Menggunakan Struktur Tree Berbasis Leksikon

    Get PDF
    Jumlah opini di media sosial seperti Twitter tersebar luas sehingga tidak mungkin membaca semua opini untuk mendapatkan seluruh sentimen. Analisis sentimen merupakan salah satu metode untuk mengatasi masalah tersebut. Salah satu pendekatan dalam analisis sentimen adalah berbasis leksikon. Pendekatan berbasis leksikon dapat menghasilkan performa yang baik pada lintas topik pembicaraan tanpa memerlukan pelatihan data. Namun, pendekatan berbasis leksikon sangat bergantung pada kelengkapan dan keragaman sentimen leksikon. Selain itu, hubungan antarkata sangat penting untuk diperhatikan karena dapat mengubah polaritas sentimen pada teks. Hubungan antarkata dapat direpresentasikan dengan baik menggunakan struktur tree. Penelitian ini menggunakan struktur tree sebagai interpretasi hubungan antarkata dalam pembentukan kalimat dengan menambahan kata ke dalam sentimen leksikon. Metode berbasis tree diujikan pada data dengan lintas topik seperti data twit Pilgub Jabar 2018, Pilpres 2019, dan pandemik COVID-19. Ketiga data uji memiliki proporsi kelas yang tidak seimbang, dengan kelas terbanyak merupakan kelas positif. Metode berbasis tree menghasilkan akurasi sebesar 64,97% (meningkat 1,26%) pada data Pilgub Jabar 2018, 64,33% (meningkat 11,41%) pada data Pilpres 2019, dan 66,24% (meningkat 7,61%) pada data pandemik COVID-19. Metode berbasis tree dapat menghasilkan akurasi yang stabil pada beberapa lintas topik dibuktikan dengan standar deviasi akurasi yang kecil (0,97%) bahkan lebih kecil dari metode tanpa tree (5,4%). Metode berbasis tree dapat meningkatkan weighted f1-measure pada data Pilpres 2019 sebesar 10,45% dan data pandemik COVID-19 sebesar 8,1%, sedangkan hasil pada data Pilgub 2018 tidak berbeda secara signifikan. Hasil akurasi dan weighted f1-measure memiliki selisih yang kecil sehingga pengukuran akurasi valid dan tidak bias terhadap data tidak seimbang. AbstractThe number of opinions on social media like Twitter is so widespread that it's impossible to read all those opinions to get all the sentiments. Sentiment analysis is one of the methods that could overcome this problem. The lexicon-based approach is one of the sentiment analysis approaches which perform well across data topics without training. However, the lexicon-based approach relies heavily on the completeness and diversity of sentiment lexicons. The relationship between words is important because it could change the sentiment polarity in the text. The tree structure could represent the relationship between words well. This study uses a tree structure as an interpretation of the relationship between words in a sentence. The tree structure is constructed by adding words to the lexicon sentiment. The tree-based method is tested on cross-topic data such as the tweet data of the 2018 West Java Governor Election, the 2019 Presidential Election, and the COVID-19 pandemic. All data used has an unbalanced class proportion, with the positive class being dominant. The accuracy results of the tree-based method on all data consecutively are 64.97% (increased by 1.26%), 64.33% (increased by 11.41%), and 66.24% (increased by 7.61%). The tree-based method produce stable accuracy on several topics proved by the small accuracies standard deviation (0.97%) that even smaller than the non-tree method (5.4%). The weighted f1-measure increases of the tree-based method on all data consecutively are 0% (equal), 10.45%, and 8.1%. The small difference between the weighted f1-measure and accuracy concludes that the accuracy resulted is valid

    Analisis Potensi Lokasi dan Klasifikasi Electronic Data Capture (EDC) pada UMKM BNI Agen46

    Get PDF
    Dalam era digitalisasi, peran agen-agen bank menjadi semakin penting dalam memberikan layanan keuangan kepada masyarakat. Bank BNI sebagai salah satu bank terkemuka di Indonesia, memiliki jaringan agen yang luas untuk mendekatkan layanan perbankan kepada nasabah. Dalam upaya mengoptimalkan jaringan agennya, Bank BNI melakukan analisis spasial menggunakan metode clustering K-means untuk menentukan lokasi potensial pendirian Agen46 baru di DKI Jakarta. Selain itu, juga dilakukan pembuatan model klasifikasi random forest Agen46 produktif dan non-produktif untuk mengoptimalkan penggunaan mesin EDC dan menghemat biaya operasional. Berdasarkan analisis spasial dengan metode clustering K-means, ditemukan tujuh lokasi potensial untuk pendirian Agen46 baru di DKI Jakarta, yaitu kecamatan Jagakarsa, Makasar, Pesanggrahan, Grogol Petamburan, Taman Sari, Tambora, dan Johar Baru. Model klasifikasi yang dibuat berhasil membedakan Agen46 yang produktif dan non-produktif dengan akurasi yang tinggi. Selain itu, pembuatan model klasifikasi Agen46 menjadi penting dalam mengenali agen-agen yang tidak produktif, sehingga dapat dilakukan antisipasi dan penanggulangan yang cepat untuk memperbaiki efisiensi penggunaan mesin EDC. Hasil analisis prediksi dan model klasifikasi ini diharapkan dapat memberikan panduan dan dasar kebijakan yang lebih baik bagi Bank BNI dalam menentukan lokasi penempatan mesin EDC Agen46 di masa depan. Dengan demikian, diharapkan Bank BNI dapat mempercepat proses pengklasifikasian Agen46, meningkatkan pemanfaatan mesin EDC, dan mengoptimalkan efisiensi biaya terkait dengan agen-agen BNI.In the era of digitalization, the role of bank agents has gained increasing significance in delivering financial services to the public. Bank BNI, a prominent financial institution in Indonesia, has established an extensive network of agents to facilitate access to banking services for customers. In an effort to optimize its agent network, Bank BNI conducts spatial analysis using the K-means Clustering method to determine potential locations for establishing new Agen46 outlets in DKI Jakarta. Additionally, a random forest classification model for productive and non-productive Agen46 agents is developed to optimize the use of EDC machines and save operational costs. Based on the spatial analysis using the K-means Clustering method, seven potential locations for new Agen46 outlets in DKI Jakarta are identified, namely the districts of Jagakarsa, Makasar, Pesanggrahan, Grogol Petamburan, Taman Sari, Tambora, and Johar Baru. The classification model demonstrates high accuracy in distinguisting between productive and non-productive Agen46 agents. Moreover, the Agen46 classification model plays a crucial role in identifying non-productive agents, enabling timely intervention and mitigation measures to improve the efficiency of EDC machine usage. The results of the prediction analysis and classification model are expected to provide better guidance and policy foundation for Bank BNI in determining the placement locations of Agen46 EDC machines in the future. Thus, it is anticipated that Bank BNI can expedite the Agen46 classification process, enhance the utilization of EDC machines, and optimize cost efficiency related to BNI agents

    Optimization of Machine Learning Models with Segmentation to Determine the Pose of Cattle

    Get PDF
    Image pattern recognition poses numerous challenges, particularly in feature recognition, making it a complex problem for machine learning algorithms. This study focuses on the problem of cow pose detection, involving the classification of cow images into categories like front, right, left, and others. With the increasing popularity of image-based applications, such as object recognition in smartphone technologies, there is a growing need for accurate and efficient classification algorithms based on shape and color. In this paper, we propose a machine learning approach utilizing Support Vector Machine (SVM) and Random Forest (RF) algorithms for cow pose detection. To achieve an optimal model, we employ data augmentation techniques, including Gaussian blur, brightness adjustments, and segmentation. The proposed segmentation methods used are Canny and Kmeans. We compare several machine learning algorithms to identify the optimal approach in terms of accuracy. The success of our method is measured by accuracy and Receiver Operating Characteristic (ROC) analysis. The results indicate that using the Canny segmentation, SVM achieved 74.31% accuracy with a testing ratio of 90:10, while RF achieved 99.60% accuracy with the same testing ratio. Furthermore, testing with SVM and K-means segmentation reached an accuracy of 98.61% with a test ratio of 80:20. The study demonstrates the effectiveness of SVM and Random Forest algorithms in cow pose detection, with Kmeans segmentation yielding highly accurate results. These findings hold promising implications for real-world applications in image-based recognition systems. Based on the results of the model obtained, it is very important in pattern recognition to use segmentation based on color even though shape recognition

    Pemodelan Berbasis Jaringan untuk Pengklasifikasian Kanker Payudara Berdasarkan Data Molekuler

    Get PDF
    Cancer is a disease characterized by uncontrolled cell growth. One of the characteristics of uncontrolled growth is the presence of estrogen-receptor-positive (ER+). About 67% of breast cancer test results have ER+. Breast cancer profiles are divided into 4 subtypes, namely: Luminal A, Luminal B, basal-like, and HER-2 enriched. Each category has a different effect on adjuvant chemotherapy. In this study, a network-based approach was used to select features/molecular biomarkers that have the potential to assist modeling and classifying sub-types of breast cancer. The molecular features used are Copy Number Alteration (CNA) and gene expression. The feature selection results were compared with the PAM50 feature-based accuracy from the literature study. The results indicate that the features selected from this network-based approach can obtain a comparable performance w.r.t the original PAM50 features, and can be used as alternative to perform breast cancer subtyping.Kanker merupakan penyakit yang ditandai dengan pertumbuhan sel yang tidak terkendali. Salah satu ciri dari adanya sel yang tumbuh tidak terkendali adalah adanya estrogen-reseptor-positif (ER+). Sekitar 67% hasil tes kanker payudara memiliki ER+. Profil kanker payudara dibagi menjadi 4 sub-tipe yaitu: Luminal A, Luminal B, basal-like, dan HER-2 enriched. Masing-masing kategori memiliki pengaruh yang berbeda terhadap kemoterapi adjuvant. Pada penelitian ini, digunakan pendekatan berbasis jaringan (network) untuk melakukan pemilihan fitur/biomarker molekuler yang berpotensi untuk membantu pemodelan dan klasifikasi sub-tipe kanker payudara. Fitur molekuler yang digunakan yaitu Copy Number Alteration (CNA) dan ekspresi gen. Hasil pemilihan fitur tersebut dibandingkan dengan akurasi berbasis fitur PAM50 dari studi literatur. Dari hasil penelitian didapatkan bahwa fitur dari metode seleksi berbasis jaringan ini mampu menghasilkan performa yang sebanding dengan fitur PAM50 dan dapat menjadi alternatif untuk melakukan klasifikasi jenis kanker payudara
    corecore