96 research outputs found

    Common lines ab-initio reconstruction of D2D_2-symmetric molecules

    Full text link
    Cryo-electron microscopy is a state-of-the-art method for determining high-resolution three-dimensional models of molecules, from their two-dimensional projection images taken by an electron microscope. A crucial step in this method is to determine a low-resolution model of the molecule using only the given projection images, without using any three-dimensional information, such as an assumed reference model. For molecules without symmetry, this is often done by exploiting common lines between pairs of images. Common lines algorithms have been recently devised for molecules with cyclic symmetry, but no such algorithms exist for molecules with dihedral symmetry. In this work, we present a common lines algorithm for determining the structure of molecules with D2D_{2} symmetry. The algorithm exploits the common lines between all pairs of images simultaneously, as well as common lines within each image. We demonstrate the applicability of our algorithm using experimental cryo-electron microscopy data

    Sampling and Approximation of Bandlimited Volumetric Data

    Full text link
    We present an approximation scheme for functions in three dimensions, that requires only their samples on the Cartesian grid, under the assumption that the functions are sufficiently concentrated in both space and frequency. The scheme is based on expanding the given function in the basis of generalized prolate spheroidal wavefunctions, with the expansion coefficients given by weighted dot products between the samples of the function and the samples of the basis functions. As numerical implementations require all expansions to be finite, we present a truncation rule for the expansions. Finally, we derive a bound on the overall approximation error in terms of the assumed space/frequency concentration

    Prolate spheroidal wave functions on a disc—Integration and approximation of two-dimensional bandlimited functions

    Get PDF
    AbstractWe consider the problem of integrating and approximating 2D bandlimited functions restricted to a disc by using 2D prolate spheroidal wave functions (PSWFs). We derive a numerical scheme for the evaluation of the 2D PSWFs on a disc, which is the basis for the numerical implementation of the presented quadrature and approximation schemes. Next, we derive a quadrature formula for bandlimited functions restricted to a disc and give a bound on the integration error. We apply this quadrature to derive an approximation scheme for such functions. We prove a bound on the approximation error and present numerical results that demonstrate the effectiveness of the quadrature and approximation schemes
    • …
    corecore