37 research outputs found
Probability and Common-Sense: Tandem Towards Robust Robotic Object Recognition in Ambient Assisted Living
The suitable operation of mobile robots when providing Ambient Assisted Living (AAL) services calls for robust object recognition capabilities. Probabilistic Graphical Models (PGMs) have become the de-facto choice in recognition systems aiming to e ciently exploit contextual relations among objects, also dealing with the uncertainty inherent to the robot workspace. However, these models can perform in an inco herent way when operating in a long-term fashion out of the laboratory, e.g. while recognizing objects in peculiar con gurations or belonging to new types. In this work we propose a recognition system that resorts to PGMs and common-sense knowledge, represented in the form of an ontology, to detect those inconsistencies and learn from them. The utilization of the ontology carries additional advantages, e.g. the possibility to verbalize the robot's knowledge. A primary demonstration of the system capabilities has been carried out with very promising results.Universidad de Málaga. Campus de Excelencia Internacional AndalucĂa Tech
OLT: A Toolkit for Object Labeling Applied to Robotic RGB-D Datasets
In this work we present the Object Labeling Toolkit
(OLT), a set of software components publicly available for
helping in the management and labeling of sequential RGB-D
observations collected by a mobile robot. Such a robot can be
equipped with an arbitrary number of RGB-D devices, possibly
integrating other sensors (e.g. odometry, 2D laser scanners,
etc.). OLT first merges the robot observations to generate a
3D reconstruction of the scene from which object segmentation
and labeling is conveniently accomplished. The annotated labels
are automatically propagated by the toolkit to each RGB-D
observation in the collected sequence, providing a dense labeling
of both intensity and depth images. The resulting objects’ labels
can be exploited for many robotic oriented applications, including
high-level decision making, semantic mapping, or contextual
object recognition. Software components within OLT are highly
customizable and expandable, facilitating the integration of
already-developed algorithms. To illustrate the toolkit suitability,
we describe its application to robotic RGB-D sequences taken in
a home environment.Universidad de Málaga. Campus de Excelencia Internacional AndalucĂa Tech. Spanish grant pro-
gram FPU-MICINN 2010 and the Spanish projects TAROTH:
New developments toward a Robot at Home (DPI2011-25483)
and PROMOVE: Advances in mobile robotics for promoting
independent life of elders (DPI2014-55826-R
Experiences on a motivational learning approach for robotics in undergraduate courses
This paper presents an educational experience carried out in robotics undergraduate courses from two
different degrees: Computer Science and Industrial Engineering, having students with diverse
capabilities and motivations. The experience compares two learning strategies for the practical
lessons of such courses: one relies on code snippets in Matlab to cope with typical robotic problems
like robot motion, localization, and mapping, while the second strategy opts for using the ROS
framework for the development of algorithms facing a competitive challenge, e.g. exploration
algorithms. The obtained students’ opinions were instructive, reporting, for example, that although they
consider harder to master ROS when compared to Matlab, it might be more useful in their (robotic
related) professional careers, which enhanced their disposition to study it. They also considered that
the challenge-exercises, in addition to motivate them, helped to develop their skills as engineers to a
greater extent than the skeleton-code based ones. These and other conclusions will be useful in
posterior courses to boost the interest and motivation of the students.Universidad de Málaga. Campus de Excelencia Internacional AndalucĂa Tech
UPGMpp: a Software Library for Contextual Object Recognition
Object recognition is a cornerstone task towards the scene
understanding problem. Recent works in the field boost their perfor-
mance by incorporating contextual information to the traditional use
of the objects’ geometry and/or appearance. These contextual cues are
usually modeled through Conditional Random Fields (CRFs), a partic-
ular type of undirected Probabilistic Graphical Model (PGM), and are
exploited by means of probabilistic inference methods. In this work we
present the Undirected Probabilistic Graphical Models in C++ library
(UPGMpp), an open source solution for representing, training, and per-
forming inference over undirected PGMs in general, and CRFs in par-
ticular. The UPGMpp library supposes a reliable and comprehensive
workbench for recognition systems exploiting contextual information, in-
cluding a variety of inference methods based on local search, graph cuts,
and message passing approaches. This paper illustrates the virtues of the
library, i.e. it is efficient, comprehensive, versatile, and easy to use, by
presenting a use-case applied to the object recognition problem in home
scenes from the challenging NYU2 dataset.Universidad de Málaga. Campus de Excelencia Internacional AndalucĂa Tech. Spanish grant program FPU-MICINN 2010
and the Spanish projects “TAROTH: New developments toward a robot at
home” (Ref. DPI2011-25483) and “PROMOVE: Advances in mobile robotics
for promoting independent life of elders” (Ref. DPI2014-55826-R
An evaluation of plume tracking as a strategy for gas source localization in turbulent wind flows
Gas source localization is likely the most direct application of a mobile robot endowed with gas sensing capabilities. Multiple algorithms have been proposed to locate the gas source within a known environment, ranging from bio-inspired to probabilistic ones. However, their application to real-world conditions still remains a major issue due to the great difficulties those scenarios bring, among others, the common presence of obstacles which hamper the movement of the robot and notably ncrease the complexity of the gas dispersion. In this work, we consider a plume tracking algorithm based on the well-known silkworm moth strategy and analyze its performance when facing
different realistic environments characterized by the presence of
obstacles and turbulent wind flows. We rely on computational fluid dynamics and the open source gas dispersion simulator GADEN to generate realistic gas distributions in scenarios where the presence of obstacles breaks down the ideal downwind plume. We first propose some modifications to the original silkworm moth algorithm in order to deal with the presence of obstacles in the environment (avoiding collisions) and then analyze its performance within four challenging environments.Universidad de Málaga. Campus de Excelencia Internacional AndalucĂa Tech. Proyecto de excelencia de la Junata de Andalucia TEP2012-53
Online Context-based Object Recognition for Mobile Robots
This work proposes a robotic object recognition
system that takes advantage of the contextual information latent
in human-like environments in an online fashion. To fully leverage
context, it is needed perceptual information from (at least) a
portion of the scene containing the objects of interest, which could
not be entirely covered by just an one-shot sensor observation.
Information from a larger portion of the scenario could still
be considered by progressively registering observations, but this
approach experiences difficulties under some circumstances, e.g.
limited and heavily demanded computational resources, dynamic
environments, etc. Instead of this, the proposed recognition
system relies on an anchoring process for the fast registration
and propagation of objects’ features and locations beyond the
current sensor frustum. In this way, the system builds a graphbased
world model containing the objects in the scenario (both
in the current and previously perceived shots), which is exploited
by a Probabilistic Graphical Model (PGM) in order to leverage
contextual information during recognition. We also propose a
novel way to include the outcome of local object recognition
methods in the PGM, which results in a decrease in the usually
high CRF learning complexity. A demonstration of our proposal
has been conducted employing a dataset captured by a mobile
robot from restaurant-like settings, showing promising results.Universidad de Málaga. Campus de Excelencia Internacional AndalucĂa Tech
Modelado del contexto geométrico para el reconocimiento de objetos
El reconocimiento de objetos es una tarea clave
para dotar de cierta autonomĂa a un robot mĂłvil.Los mĂ©todos de reconocimiento tradicionales han alcanzado un Ă©xito aceptable empleando informaciĂłn sobre la apariencia y/o la geomĂ©trica de los objetos, aunque pueden presentar resultados ambiguos. Persiguiendo mitigar esta desventaja, en este trabajo se estudia cĂłmo modelar informaciĂłn sobre el contexto geomĂ©trico de los objetos, la cual resulta Ăştil para inclinar la balanza en reconocimientos ambiguos, de tal manera que se alcance un reconocimiento tan exitoso como sea posible. Para ello hemos recurrido a los Campos Aleatorios Condicionales como herramienta de modelado, y a Robot@Home como
conjunto de datos para la evaluaciĂłn. Con estas premisas se han alcanzado conclusiones interesantes para cualquier sistema reconocedor empleando informaciĂłn contextual.Este trabajo se ha desarrollado en el marco de
los proyectos TEP2012-530 y DPI2014-55826-R,
fi nanciados por la Junta de AndalucĂa y el Ministerio
de Ciencia e InnovaciĂłn respectivamente,
ambos contando con fondos del Fondo Europeo de
Desarrollo Regional (FEDER). Universidad de Málaga. Campus de Excelencia Internacional AndalucĂa Tech
LaLaLoc: latent layout localisation in dynamic, unvisited environments
We present LaLaLoc to localise in environments without the need for prior visitation, and in a manner that is robust to large changes in scene appearance, such as a full rearrangement of furniture. Specifically, LaLaLoc performs localisation through latent representations of room layout. LaLaLoc learns a rich embedding space shared between RGB panoramas and layouts inferred from a known floor plan that encodes the structural similarity between locations. Further, LaLaLoc introduces direct, cross-modal pose optimisation in its latent space. Thus, LaLaLoc enables fine-grained pose estimation in a scene without the need for prior visitation, as well as being robust to dynamics, such as a change in furniture configuration. We show that in a domestic environment LaLaLoc is able to accurately localise a single RGB panorama image to within 8.3cm, given only a floor plan as a prior
Improvement of the sensory and autonomous capability of robots through olfaction: the IRO Project
Proyecto de Excelencia Junta de AndalucĂa TEP2012-530Olfaction is a valuable source of information about the environment that has not been su ciently exploited in mobile robotics
yet. Certainly, odor information can contribute to other sensing modalities, e.g. vision, to successfully accomplish high-level robot
activities, such as task planning or execution in human environments. This paper describes the developments carried out in the scope of the IRO project, which aims at making progress in this direction by investigating mechanisms that exploit odor information (usually coming in the form of the type of volatile and its concentration) in problems like object recognition and scene-activity understanding. A distinctive aspect of this research is the special attention paid to the role of semantics within the robot perception and decisionmaking processes. The results of the IRO project have improved the robot capabilities in terms of efciency, autonomy and usefulness.Universidad de Málaga. Campus de Excelencia Internacional AndalucĂa Tec