8,984 research outputs found

    Prediction of unsteady aerodynamic loadings caused by leading edge and trailing edge control surface motions in subsonic compressible flow: Computer program description

    Get PDF
    A digital computer program has been developed to calculate unsteady loadings caused by motions of lifting surfaces with leading edge or trailing edge controls based on the subsonic kernel function approach. The pressure singularities at hinge line and side edges have been extracted analytically as a preliminary step to solving the integral equation by collocation. The program calculates generalized aerodynamic forces for user supplied deflection modes. Optional intermediate output includes pressure at an array of points, and sectional generalized forces. From one to six controls on the half span can be accommodated

    Reduction of computer usage costs in predicting unsteady aerodynamic loadings caused by control surface motions: Analysis and results

    Get PDF
    Results of theoretical and numerical investigations conducted to develop economical computing procedures were applied to an existing computer program that predicts unsteady aerodynamic loadings caused by leading and trailing edge control surface motions in subsonic compressible flow. Large reductions in computing costs were achieved by removing the spanwise singularity of the downwash integrand and evaluating its effect separately in closed form. Additional reductions were obtained by modifying the incremental pressure term that account for downwash singularities at control surface edges. Accuracy of theoretical predictions of unsteady loading at high reduced frequencies was increased by applying new pressure expressions that exactly satisified the high frequency boundary conditions of an oscillating control surface. Comparative computer result indicated that the revised procedures provide more accurate predictions of unsteady loadings as well as providing reduction of 50 to 80 percent in computer usage costs

    Detection of corona and dry-band arc discharges on nano-composite epoxy insulators using RF sensing

    Get PDF
    Not availabl

    Reduction of computer usage costs in predicting unsteady aerodynamic loadings caused by control surface motions: Computer program description

    Get PDF
    A digital computer program was developed to calculate unsteady loadings caused by motions of lifting surfaces with leading edge and trailing edge controls based on the subsonic kernel function approach. The pressure singularities at hinge line and side edges were extracted analytically as a preliminary step to solving the integral equation of collocation. The program calculates generalized aerodynamic forces for user supplied deflection modes. Optional intermediate output includes pressure at an array of points, and sectional generalized forces. From one to six controls on the half span can be accomodated

    Prediction of unsteady aerodynamic loadings caused by leading edge and trailing edge control surface motions in subsonic compressible flow: Analysis and results

    Get PDF
    A theoretical analysis and computer program was developed for the prediction of unsteady lifting surface loadings caused by motions of leading edge and trailing edge control surfaces having sealed gaps. The final form of the downwash integral equation was formulated by isolating the singularities from the nonsingular terms and using a preferred solution process to remove and evaluate the downwash discontinuities in a systematic manner. Comparisons of theoretical and experimental pressure data are made for several control surface configurations. The comparisons indicate that reasonably accurate theoretical pressure distributions and generalized forces may be obtained for a wide variety of control surface configurations. Spanwise symmetry or antisymmetry of motion, and up to six control surfaces on each half span can be accommodated

    Investigation of synthetic aperture methods in ultrasound surface imaging using elementary surface types

    Get PDF
    Synthetic aperture imaging methods have been employed widely in recent research in non-destructive testing (NDT), but uptake has been more limited in medical ultrasound imaging. Typically offering superior focussing power over more traditional phased array methods, these techniques have been employed in NDT applications to locate and characterise small defects within large samples, but have rarely been used to image surfaces. A desire to ultimately employ ultrasonic surface imaging for bone surface geometry measurement prior to surgical intervention motivates this research, and results are presented for initial laboratory trials of a surface reconstruction technique based on global thresholding of ultrasonic 3D point cloud data. In this study, representative geometry artefacts were imaged in the laboratory using two synthetic aperture techniques; the Total Focusing Method (TFM) and the Synthetic Aperture Focusing Technique (SAFT) employing full and narrow synthetic apertures, respectively. Three high precision metallic samples of known geometries (cuboid, sphere and cylinder) which featured a range of elementary surface primitives were imaged using a 5MHz, 128 element 1D phased array employing both SAFT and TFM approaches. The array was manipulated around the samples using a precision robotic positioning system, allowing for repeatable ultrasound derived 3D surface point clouds to be created. A global thresholding technique was then developed that allowed the extraction of the surface profiles, and these were compared with the known geometry samples to provide a quantitative measure of error of 3D surface reconstruction. The mean errors achieved with optimised SAFT imaging for the cuboidal, spherical and cylindrical samples were 1.3 mm, 2.9 mm and 2.0 mm respectively, while those for TFM imaging were 3.7 mm, 3.0 mm and 3.1 mm, respectively. These results were contrary to expectations given the higher information content associated with the TFM images. However, it was established that the reduced error associated with the SAFT technique was associated with significant reductions in side lobe levels of approximately 24dB in comparison to TFM imaging, although this came at the expense of reduced resolution and coverage

    Experimental Determination of the Lorenz Number in Cu0.01Bi2Te2.7Se0.3 and Bi0.88Sb0.12

    Full text link
    Nanostructuring has been shown to be an effective approach to reduce the lattice thermal conductivity and improve the thermoelectric figure of merit. Because the experimentally measured thermal conductivity includes contributions from both carriers and phonons, separating out the phonon contribution has been difficult and is mostly based on estimating the electronic contributions using the Wiedemann-Franz law. In this paper, an experimental method to directly measure electronic contributions to the thermal conductivity is presented and applied to Cu0.01Bi2Te2.7Se0.3, [Cu0.01Bi2Te2.7Se0.3]0.98Ni0.02, and Bi0.88Sb0.12. By measuring the thermal conductivity under magnetic field, electronic contributions to thermal conductivity can be extracted, leading to knowledge of the Lorenz number in thermoelectric materials
    • …
    corecore