69 research outputs found

    The Search for Neutrino-Antineutrino Mixing from Lorentz Invariance Violation using Neutrino Interactions in MINOS

    Full text link
    We searched for a sidereal modulation in the rate of neutrinos observed by the MINOS far detector. The detection of these signals could be a signature of neutrino-antineutrino mixing due to Lorentz and CPT violation as described by the Standard-Model Extension framework. We found no evidence for these sidereal signals and we placed limits on the coefficients in this theory describing the effect.Comment: Presented at the Sixth Meeting on CPT and Lorentz Symmetry, Bloomington, Indiana, June 17-21, 201

    Cultivating Textbook Alternatives From the Ground Up: One Public University’s Sustainable Model for Open and Alternative Educational Resource Proliferation

    Get PDF
    This note from the field reviews the sustainability of an institution-wide program for adopting and adapting open and alternative educational resources (OAER) at Kansas State University (K-State). Developed in consult of open textbook initiatives at other institutions and modified around the needs and expectations of K-State students and faculty, this initiative proposes a sustainable means of incentivizing faculty participation via institutional support, encouraging the creation and maintenance of OAER through recurring funding, promoting innovative realizations of “educational resources” beyond traditional textbooks, and rallying faculty participation in adopting increasingly open textbook alternatives. The history and resulting structure of the initiative raise certain recommendations for how public universities may sustainably offset student textbook costs while also empowering the pedagogies of educators via a more methodical approach to adopting open materials

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    The Capital Structure and Governance of a Mortgage Securitization Utility

    Full text link
    We explore the capital structure and governance of a mortgage-insuring securitization utility operating with government reinsurance for systemic or 'tail' risk. The structure we propose for the replacement of the GSEs focuses on aligning incentives for appropriate pricing and transfer of mortgage risks across the private sector and between the private sector and the government. We present the justification and mechanics of a vintage-based capital structure, and assess the components of the mortgage guarantee fee, whose size we find is most sensitive to the required capital ratio and the expected return on that capital. We discuss the implications of selling off some of the utility's mortgage credit risk to the capital markets and how the informational value of such transactions may vary with the level of risk transfer. Finally, we explore how mutualization could address incentive misalignments arising out of securitization and government insurance, as well as how the governance structure for such a financial market utility could be designed

    Status of the ArgoNeuT and MicroBooNE Experiments

    Full text link
    corecore