47 research outputs found

    Gauge Gravity: a forward-looking introduction

    Full text link
    This article is a review of modern approaches to gravity that treat the gravitational interaction as a type of gauge theory. The purpose of the article is twofold. First, it is written in a colloquial style and is intended to be a pedagogical introduction to the gauge approach to gravity. I begin with a review of the Einstein-Cartan formulation of gravity, move on to the Macdowell-Mansouri approach, then show how gravity can be viewed as the symmetry broken phase of an (A)dS-gauge theory. This covers roughly the first half of the article. Armed with these tools, the remainder of the article is geared toward new insights and new lines of research that can be gained by viewing gravity from this perspective. Drawing from familiar concepts from the symmetry broken gauge theories of the standard model, we show how the topological structure of the gauge group allows for an infinite class of new solutions to the Einstein-Cartan field equations that can be thought of as degenerate ground states of the theory. We argue that quantum mechanical tunneling allows for transitions between the degenerate vacua. Generalizing the tunneling process from a topological phase of the gauge theory to an arbitrary geometry leads to a modern reformulation of the Hartle-Hawking "no boundary" proposal.Comment: 62 pages, 8 figure

    The Immirzi Parameter as an Instanton Angle

    Full text link
    The Barbero-Immirzi parameter is a one parameter quantization ambiguity underpinning the loop approach to quantum gravity that bears tantalizing similarities to the theta parameter of gauge theories such as Yang-Mills and QCD. Despite the apparent semblance, the Barbero-Immirzi field has resisted a direct topological interpretation along the same lines as the theta-parameter. Here we offer such an interpretation. Our approach begins from the perspective of Einstein-Cartan gravity as the symmetry broken phase of a de Sitter gauge theory. From this angle, just as in ordinary gauge theories, a theta-term emerges from the requirement that the vacuum is stable against quantum mechanical tunneling. The Immirzi parameter is then identified as a combination of Newton's constant, the cosmological constant, and the theta-parameter.Comment: 24 page

    In Search of Quantum de Sitter Space: Generalizing the Kodama State

    Get PDF
    The Kodama state is unique in being an exact solution to all the constraints of quantum gravity that also has a well defined semi-classical interpretation as the quantum version of a classical spacetime, namely de Sitter or anti-de sitter space. Despite this, the state fails to pass some of the key tests of a physically realistic quantum state. In an attempt to resolve this problem, we track down the root of the problem to a choice for a particular parameter: the Immirzi parameter. The Kodama state takes this parameter to be complex, whereas modern formulations of canonical quantum gravity require that the parameter is real. We generalize the Kodama state to real values of the Immirzi parameter, and find that the generalization opens up a large Hilbert space of states, one of which can be directly interpreted as particular slicing of de Sitter space. We then show that these states resolve, or are expected to resolve many of the problems associated with the original version of the Kodama state. In order to resolve the interpretation of the multitude of states, we develop a new model of covariant classical and quantum gravity where the full Lorentz group is retained as a local symmetry group, and the canonical evolution generated by the constraints has a close relation to a larger group: the de Sitter group. This formalism gives strong evidence that the multitude of generalized Kodama states can be unified into a single quantum state that is quantum de Sitter space.Comment: Ph.D. dissertation, University of Texas at Austin. 150 pages tota

    Gravity from a fermionic condensate of a gauge theory

    Full text link
    The most prominent realization of gravity as a gauge theory similar to the gauge theories of the standard model comes from enlarging the gauge group from the Lorentz group to the de Sitter group. To regain ordinary Einstein-Cartan gravity the symmetry must be broken, which can be accomplished by known quasi-dynamic mechanisms. Motivated by symmetry breaking models in particle physics and condensed matter systems, we propose that the symmetry can naturally be broken by a homogenous and isotropic fermionic condensate of ordinary spinors. We demonstrate that the condensate is compatible with the Einstein-Cartan equations and can be imposed in a fully de Sitter invariant manner. This lends support, and provides a physically realistic mechanism for understanding gravity as a gauge theory with a spontaneously broken local de Sitter symmetry.Comment: 16 page
    corecore