1,705 research outputs found

    Exactly solvable Kitaev model in three dimensions

    Full text link
    We introduce a spin-1/2 model in three dimensions which is a generalization of the well-known Kitaev model on a honeycomb lattice. Following Kitaev, we solve the model exactly by mapping it to a theory of non-interacting fermions in the background of a static Z_2 gauge field. The phase diagram consists of a gapped phase and a gapless one, similar to the two-dimensional case. Interestingly, unlike in the two-dimensional model, in the gapless phase the gap vanishes on a contour in the k space. Furthermore, we show that the flux excitations of the gauge field, due to some local constraints, form loop like structures; such loops exist on a lattice formed by the plaquettes in the original lattice and is topologically equivalent to the pyrochlore lattice. Finally, we derive a low-energy effective Hamiltonian that can be used to study the properties of the excitations in the gapped phase.Comment: 9 pages, 7 figures; published version; a new section and more references adde