4,404 research outputs found
Prevention of arthritis by interleukin 10-producing B cells
In this study we have shown that activation of arthritogenic splenocytes with antigen and agonistic anti-CD40 gives raise to a B cell population that produce high levels of interleukin (IL)-10 and low levels of interferon (IFN)-{gamma}. Transfer of these B cells into DBA/1-TcR-ß-Tg mice, immunized with bovine collagen (CII) emulsified in complete Freund's adjuvant inhibited T helper type 1 differentiation, prevented arthritis development, and was also effective in ameliorating established disease. IL-10 is essential for the regulatory function of this subset of B cells, as the B cells population isolated from IL-10 knockout mice failed to mediate this protective function. Furthermore, B cells isolated from arthritogenic splenocytes treated in vitro with anti–IL-10/anti–IL-10R were unable to protect recipient mice from developing arthritis. Our results suggest a new role of a subset of B cells in controlling T cell differentiation and autoimmune disorders
Wannier interpolation of the electron-phonon matrix elements in polar semiconductors: Polar-optical coupling in GaAs
We generalize the Wannier interpolation of the electron-phonon matrix
elements to the case of polar-optical coupling in polar semiconductors. We
verify our methodological developments against experiments, by calculating the
widths of the electronic bands due to electron-phonon scattering in GaAs, the
prototype polar semiconductor. The calculated widths are then used to estimate
the broadenings of excitons at critical points in GaAs and the electron-phonon
relaxation times of hot electrons. Our findings are in good agreement with
available experimental data. Finally, we demonstrate that while the Fr\"ohlich
interaction is the dominant scattering process for electrons/holes close to the
valley minima, in agreement with low-field transport results, at higher
energies, the intervalley scattering dominates the relaxation dynamics of hot
electrons or holes. The capability of interpolating the polar-optical coupling
opens new perspectives in the calculation of optical absorption and transport
properties in semiconductors and thermoelectrics.Comment: To appear on Phys. Rev.
Measurement of the TeV atmospheric muon charge ratio with the full OPERA data set
The OPERA detector, designed to search for νμ→ντ oscillations in direct appearance mode, is located in the underground Gran Sasso laboratory, a privileged location to study TeV-scale cosmic rays. Given the large rock depth and the detector's wide acceptance, the apparatus was used to measure the atmospheric muon charge ratio in the TeV energy region. The muon charge ratio, defined as the number of positive over negative charged muons, provides an understanding of the mechanism of multiparticle production in the atmosphere in kinematic regions not accessible to accelerators, as well as information on the primary cosmic ray composition. We present the results obtained with the full statistics collected by OPERA from 2008 to 2012. The combination of two data sets with opposite magnet polarities allows minimizing systematic uncertainties and reaching an accurate determination of the muon charge ratio. Relevant parameters on the composition of primary cosmic rays and the associated kaon production in the forward fragmentation region are obtained
All-electron magnetic response with pseudopotentials: NMR chemical shifts
A theory for the ab initio calculation of all-electron NMR chemical shifts in
insulators using pseudopotentials is presented. It is formulated for both
finite and infinitely periodic systems and is based on an extension to the
Projector Augmented Wave approach of Bloechl [P. E. Bloechl, Phys. Rev. B 50,
17953 (1994)] and the method of Mauri et al [F. Mauri, B.G. Pfrommer, and S.G.
Louie, Phys. Rev. Lett. 77, 5300 (1996)]. The theory is successfully validated
for molecules by comparison with a selection of quantum chemical results, and
in periodic systems by comparison with plane-wave all-electron results for
diamond.Comment: 25 pages, 4 tables, submitted to Physical Review
A Time-driven Data Placement Strategy for a Scientific Workflow Combining Edge Computing and Cloud Computing
Compared to traditional distributed computing environments such as grids,
cloud computing provides a more cost-effective way to deploy scientific
workflows. Each task of a scientific workflow requires several large datasets
that are located in different datacenters from the cloud computing environment,
resulting in serious data transmission delays. Edge computing reduces the data
transmission delays and supports the fixed storing manner for scientific
workflow private datasets, but there is a bottleneck in its storage capacity.
It is a challenge to combine the advantages of both edge computing and cloud
computing to rationalize the data placement of scientific workflow, and
optimize the data transmission time across different datacenters. Traditional
data placement strategies maintain load balancing with a given number of
datacenters, which results in a large data transmission time. In this study, a
self-adaptive discrete particle swarm optimization algorithm with genetic
algorithm operators (GA-DPSO) was proposed to optimize the data transmission
time when placing data for a scientific workflow. This approach considered the
characteristics of data placement combining edge computing and cloud computing.
In addition, it considered the impact factors impacting transmission delay,
such as the band-width between datacenters, the number of edge datacenters, and
the storage capacity of edge datacenters. The crossover operator and mutation
operator of the genetic algorithm were adopted to avoid the premature
convergence of the traditional particle swarm optimization algorithm, which
enhanced the diversity of population evolution and effectively reduced the data
transmission time. The experimental results show that the data placement
strategy based on GA-DPSO can effectively reduce the data transmission time
during workflow execution combining edge computing and cloud computing
Electron-phonon coupling and electron self-energy in electron-doped graphene: calculation of angular resolved photoemission spectra
We obtain analytical expressions for the electron self-energy and the
electron-phonon coupling in electron-doped graphene using electron-phonon
matrix elements extracted from density functional theory simulations. From the
electron self-energies we calculate angle resolved photoemission spectra. We
demonstrate that the measured kink at eV from the Fermi level is
actually composed of two features, one at eV due to the
twofold degenerate E mode, and a second one at eV due to
the A mode. The electron-phonon coupling extracted from the kink
observed in ARPES experiments is roughly a factor of 5.5 larger than the
calculated one. This disagreement can only be partially reconciled by the
inclusion of resolution effects. Indeed we show that a finite resolution
increases the apparent electron-phonon coupling by underestimating the
renormalization of the electron velocity at energies larger than the kinks
positions. The discrepancy between theory and experiments is thus reduced to a
factor of 2.2. From the linewidth of the calculated ARPES spectra we
obtain the electron relaxation time. A comparison with available experimental
data in graphene shows that the electron relaxation time detected in ARPES is
almost two orders of magnitudes smaller than what measured by other
experimental techniques.Comment: 9 pages, 7 figures, see also Matteo Calandra and Francesco Mauri,
arXiv:0707.149
Yangians in Deformed Super Yang-Mills Theories
We discuss the integrability structure of deformed, four-dimensional N=4
super Yang-Mills theories using Yangians. We employ a recent procedure by
Beisert and Roiban that generalizes the beta deformation of Lunin and Maldacena
to produce N=1 superconformal gauge theories, which have the superalgebra
SU(2,2|1)xU(1)xU(1). The deformed theories, including those with the more
general twist, were shown to have retained their integrable structure. Here we
examine the Yangian algebra of these deformed theories. In a five field
subsector, we compute the two cases of SU(2)xU(1)xU(1)xU(1) and
SU(2|1)xU(1)xU(1) as residual symmetries of SU(2,2|1)xU(1)xU(1). We compute a
twisted coproduct for these theories, and show that only for the residual
symmetry do we retain the standard coproduct. The twisted coproduct thus
provides a method for symmetry breaking. However, the full Yangian structure of
SU(2|3) is manifest in our subsector, albeit with twisted coproducts, and
provides for the integrability of the theory.Comment: 17 page
Pulsating Strings in Deformed Backgrounds
This is a brief summary on pulsating strings in beta deformed backgrounds
found recently.Comment: 8 pages. Talk presented at Quantum Theory and Symmetries 7, Prague,
August 7-13, 201
- …