3,893 research outputs found

    Prevention of arthritis by interleukin 10-producing B cells

    Get PDF
    In this study we have shown that activation of arthritogenic splenocytes with antigen and agonistic anti-CD40 gives raise to a B cell population that produce high levels of interleukin (IL)-10 and low levels of interferon (IFN)-{gamma}. Transfer of these B cells into DBA/1-TcR-ß-Tg mice, immunized with bovine collagen (CII) emulsified in complete Freund's adjuvant inhibited T helper type 1 differentiation, prevented arthritis development, and was also effective in ameliorating established disease. IL-10 is essential for the regulatory function of this subset of B cells, as the B cells population isolated from IL-10 knockout mice failed to mediate this protective function. Furthermore, B cells isolated from arthritogenic splenocytes treated in vitro with anti–IL-10/anti–IL-10R were unable to protect recipient mice from developing arthritis. Our results suggest a new role of a subset of B cells in controlling T cell differentiation and autoimmune disorders

    Wannier interpolation of the electron-phonon matrix elements in polar semiconductors: Polar-optical coupling in GaAs

    Full text link
    We generalize the Wannier interpolation of the electron-phonon matrix elements to the case of polar-optical coupling in polar semiconductors. We verify our methodological developments against experiments, by calculating the widths of the electronic bands due to electron-phonon scattering in GaAs, the prototype polar semiconductor. The calculated widths are then used to estimate the broadenings of excitons at critical points in GaAs and the electron-phonon relaxation times of hot electrons. Our findings are in good agreement with available experimental data. Finally, we demonstrate that while the Fr\"ohlich interaction is the dominant scattering process for electrons/holes close to the valley minima, in agreement with low-field transport results, at higher energies, the intervalley scattering dominates the relaxation dynamics of hot electrons or holes. The capability of interpolating the polar-optical coupling opens new perspectives in the calculation of optical absorption and transport properties in semiconductors and thermoelectrics.Comment: To appear on Phys. Rev.

    Measurement of the TeV atmospheric muon charge ratio with the full OPERA data set

    Get PDF
    The OPERA detector, designed to search for νμ→ντ oscillations in direct appearance mode, is located in the underground Gran Sasso laboratory, a privileged location to study TeV-scale cosmic rays. Given the large rock depth and the detector's wide acceptance, the apparatus was used to measure the atmospheric muon charge ratio in the TeV energy region. The muon charge ratio, defined as the number of positive over negative charged muons, provides an understanding of the mechanism of multiparticle production in the atmosphere in kinematic regions not accessible to accelerators, as well as information on the primary cosmic ray composition. We present the results obtained with the full statistics collected by OPERA from 2008 to 2012. The combination of two data sets with opposite magnet polarities allows minimizing systematic uncertainties and reaching an accurate determination of the muon charge ratio. Relevant parameters on the composition of primary cosmic rays and the associated kaon production in the forward fragmentation region are obtained

    All-electron magnetic response with pseudopotentials: NMR chemical shifts

    Full text link
    A theory for the ab initio calculation of all-electron NMR chemical shifts in insulators using pseudopotentials is presented. It is formulated for both finite and infinitely periodic systems and is based on an extension to the Projector Augmented Wave approach of Bloechl [P. E. Bloechl, Phys. Rev. B 50, 17953 (1994)] and the method of Mauri et al [F. Mauri, B.G. Pfrommer, and S.G. Louie, Phys. Rev. Lett. 77, 5300 (1996)]. The theory is successfully validated for molecules by comparison with a selection of quantum chemical results, and in periodic systems by comparison with plane-wave all-electron results for diamond.Comment: 25 pages, 4 tables, submitted to Physical Review

    A Time-driven Data Placement Strategy for a Scientific Workflow Combining Edge Computing and Cloud Computing

    Full text link
    Compared to traditional distributed computing environments such as grids, cloud computing provides a more cost-effective way to deploy scientific workflows. Each task of a scientific workflow requires several large datasets that are located in different datacenters from the cloud computing environment, resulting in serious data transmission delays. Edge computing reduces the data transmission delays and supports the fixed storing manner for scientific workflow private datasets, but there is a bottleneck in its storage capacity. It is a challenge to combine the advantages of both edge computing and cloud computing to rationalize the data placement of scientific workflow, and optimize the data transmission time across different datacenters. Traditional data placement strategies maintain load balancing with a given number of datacenters, which results in a large data transmission time. In this study, a self-adaptive discrete particle swarm optimization algorithm with genetic algorithm operators (GA-DPSO) was proposed to optimize the data transmission time when placing data for a scientific workflow. This approach considered the characteristics of data placement combining edge computing and cloud computing. In addition, it considered the impact factors impacting transmission delay, such as the band-width between datacenters, the number of edge datacenters, and the storage capacity of edge datacenters. The crossover operator and mutation operator of the genetic algorithm were adopted to avoid the premature convergence of the traditional particle swarm optimization algorithm, which enhanced the diversity of population evolution and effectively reduced the data transmission time. The experimental results show that the data placement strategy based on GA-DPSO can effectively reduce the data transmission time during workflow execution combining edge computing and cloud computing

    Electron-phonon coupling and electron self-energy in electron-doped graphene: calculation of angular resolved photoemission spectra

    Full text link
    We obtain analytical expressions for the electron self-energy and the electron-phonon coupling in electron-doped graphene using electron-phonon matrix elements extracted from density functional theory simulations. From the electron self-energies we calculate angle resolved photoemission spectra. We demonstrate that the measured kink at ≈−0.2\approx -0.2 eV from the Fermi level is actually composed of two features, one at ≈−0.195\approx -0.195 eV due to the twofold degenerate E2g_{2g} mode, and a second one at ≈−0.16\approx -0.16 eV due to the A1′_{1}^{'} mode. The electron-phonon coupling extracted from the kink observed in ARPES experiments is roughly a factor of 5.5 larger than the calculated one. This disagreement can only be partially reconciled by the inclusion of resolution effects. Indeed we show that a finite resolution increases the apparent electron-phonon coupling by underestimating the renormalization of the electron velocity at energies larger than the kinks positions. The discrepancy between theory and experiments is thus reduced to a factor of ≈\approx 2.2. From the linewidth of the calculated ARPES spectra we obtain the electron relaxation time. A comparison with available experimental data in graphene shows that the electron relaxation time detected in ARPES is almost two orders of magnitudes smaller than what measured by other experimental techniques.Comment: 9 pages, 7 figures, see also Matteo Calandra and Francesco Mauri, arXiv:0707.149

    Yangians in Deformed Super Yang-Mills Theories

    Get PDF
    We discuss the integrability structure of deformed, four-dimensional N=4 super Yang-Mills theories using Yangians. We employ a recent procedure by Beisert and Roiban that generalizes the beta deformation of Lunin and Maldacena to produce N=1 superconformal gauge theories, which have the superalgebra SU(2,2|1)xU(1)xU(1). The deformed theories, including those with the more general twist, were shown to have retained their integrable structure. Here we examine the Yangian algebra of these deformed theories. In a five field subsector, we compute the two cases of SU(2)xU(1)xU(1)xU(1) and SU(2|1)xU(1)xU(1) as residual symmetries of SU(2,2|1)xU(1)xU(1). We compute a twisted coproduct for these theories, and show that only for the residual symmetry do we retain the standard coproduct. The twisted coproduct thus provides a method for symmetry breaking. However, the full Yangian structure of SU(2|3) is manifest in our subsector, albeit with twisted coproducts, and provides for the integrability of the theory.Comment: 17 page

    Instanton test of non-supersymmetric deformations of the AdS_5 x S^5

    Get PDF
    We consider instanton effects in a non-supersymmetric gauge theory obtained by marginal deformations of the N=4 SYM. This gauge theory is expected to be dual to type IIB string theory on the AdS_5 times deformed-S^5 background. From an instanton calculation in the deformed gauge theory we extract the prediction for the dilaton-axion field \tau in dual string theory. In the limit of small deformations where the supergravity regime is valid, our instanton result reproduces the expression for \tau of the supergravity solution found by Frolov.Comment: 15 page
    • …
    corecore