3,836 research outputs found

    Non equilibrium stationary state for the SEP with births and deaths

    Full text link
    We consider the symmetric simple exclusion process in the interval \La_N:=[-N,N]\cap\mathbb Z with births and deaths taking place respectively on suitable boundary intervals I+I_+ and I−I_-, as introduced in De Masi et al. (J. Stat. Phys. 2011). We study the stationary measure density profile in the limit $N\to\infty

    Optimal strategy for polarization modulation in the LSPE-SWIPE experiment

    Get PDF
    Context. Cosmic microwave background (CMB) B-mode experiments are required to control systematic effects with an unprecedented level of accuracy. Polarization modulation by a half wave plate (HWP) is a powerful technique able to mitigate a large number of the instrumental systematics. Aims. Our goal is to optimize the polarization modulation strategy of the upcoming LSPE-SWIPE balloon-borne experiment, devoted to the accurate measurement of CMB polarization at large angular scales. Methods. We departed from the nominal LSPE-SWIPE modulation strategy (HWP stepped every 60 s with a telescope scanning at around 12 deg/s) and performed a thorough investigation of a wide range of possible HWP schemes (either in stepped or continuously spinning mode and at different azimuth telescope scan-speeds) in the frequency, map and angular power spectrum domain. In addition, we probed the effect of high-pass and band-pass filters of the data stream and explored the HWP response in the minimal case of one detector for one operation day (critical for the single-detector calibration process). We finally tested the modulation performance against typical HWP-induced systematics. Results. Our analysis shows that some stepped HWP schemes, either slowly rotating or combined with slow telescope modulations, represent poor choices. Moreover, our results point out that the nominal configuration may not be the most convenient choice. While a large class of spinning designs provides comparable results in terms of pixel angle coverage, map-making residuals and BB power spectrum standard deviations with respect to the nominal strategy, we find that some specific configurations (e.g., a rapidly spinning HWP with a slow gondola modulation) allow a more efficient polarization recovery in more general real-case situations. Conclusions. Although our simulations are specific to the LSPE-SWIPE mission, the general outcomes of our analysis can be easily generalized to other CMB polarization experiments

    LHC Collimators Low Level Control System

    Get PDF
    The low level control system (LLCS) of the LHC collimators is responsible for accurate synchronization of 500 axes of motion at microsecond level. Stepping motors are used in open loop ensuring a high level of repeatability of the position. In addition, a position survey system based on Resolver and LVDT sensors and operating at approximately 100 Hz, verifies in real-time the position of each axis with some tens of micrometers accuracy with respect to the expected position. The LLCS is characterized by several challenging requirements such as high reliability, redundancy, strict timing constraints and compactness of the low level hardware because of the limited space available in the racks underground. The National Instruments PXI platform has been proposed and evaluated as real-time low level hardware. In this paper the architecture of the LHC collimators LLCS is presented. The solution adopted for implementing motion control and positioning sensors reading on the PXI platform are detailed

    Key mechanisms of the seismic behaviour of external rc wide beam–column joints

    Get PDF
    Background: Reinforced concrete beam-column connections provided with wide beams are widely used in the European residential building stock. Several seismic codes indicate some limitation to be applied to this kind of reinforced concrete buildings due to their reduced performances with respect to those provided with conventional beams. Objective: The paper is focused on improving the knowledge of wide beam-column joints, highlighting the key degradation mechanisms affecting them, mainly related to slip phenomena of beam rebars, especially the rebars placed outside the column width. Methods: The behavior of wide beam-column joints has been evaluated by means of both experimental tests under cyclic loading and accurate nonlinear finite element analyses. The FE models predicted satisfactorily experimental results, thus enabling to carry out additional numerical analyses aimed at checking the effect of the longitudinal reinforcement amount in the beam member. Results: Experimental results show that wide beam-column joints conforming to the Italian seismic code do not exhibit a sufficiently ductile behavior due to damage in the non-confined concrete region, where beam rebars external to the joint core are anchored. Numerical simulations allowed to monitor bond slip of beam rebars as a function of the applied global displacement, showing differences between bars placed inside and outside the column width. Conclusion: Numerical simulations showed that different behavior is expected in case additional beam rebars are placed either inside or outside column width. In the first case, higher peak load and ductility values can be achieved, provided that the amount of beam reinforcement is not high enough to shift damage towards the column or cause high shear stress to the joint core and its consequent fragile failure

    Development of Lumped Element Kinetic Inductance Detectors for the W-Band

    Full text link
    We are developing a Lumped Element Kinetic Inductance Detector (LEKID) array able to operate in the W-band (75-110 GHz) in order to perform ground-based Cosmic Microwave Background (CMB) and mm-wave astronomical observations. The W-band is close to optimal in terms of contamination of the CMB from Galactic synchrotron, free-free, and thermal interstellar dust. In this band, the atmosphere has very good transparency, allowing interesting ground-based observations with large (>30 m) telescopes, achieving high angular resolution (<0.4 arcmin). In this work we describe the startup measurements devoted to the optimization of a W-band camera/spectrometer prototype for large aperture telescopes like the 64 m SRT (Sardinia Radio Telescope). In the process of selecting the best superconducting film for the LEKID, we characterized a 40 nm thick Aluminum 2-pixel array. We measured the minimum frequency able to break CPs (i.e. hν=2Δ(Tc)=3.5kBTch\nu=2\Delta\left(T_{c}\right)=3.5k_{B}T_{c}) obtaining ν=95.5\nu=95.5 GHz, that corresponds to a critical temperature of 1.31 K. This is not suitable to cover the entire W-band. For an 80 nm layer the minimum frequency decreases to 93.2 GHz, which corresponds to a critical temperature of 1.28 K; this value is still suboptimal for W-band operation. Further increase of the Al film thickness results in bad performance of the detector. We have thus considered a Titanium-Aluminum bi-layer (10 nm thick Ti + 25 nm thick Al, already tested in other laboratories), for which we measured a critical temperature of 820 mK and a cut-on frequency of 65 GHz: so this solution allows operation in the entire W-band.Comment: 16th International Workshop on Low Temperature Detectors, Grenoble 20-24 July 2015, Journal of Low Temperature Physics, Accepte

    Large deviations for the macroscopic motion of an interface

    Get PDF
    We study the most probable way an interface moves on a macroscopic scale from an initial to a final position within a fixed time in the context of large deviations for a stochastic microscopic lattice system of Ising spins with Kac interaction evolving in time according to Glauber (non-conservative) dynamics. Such interfaces separate two stable phases of a ferromagnetic system and in the macroscopic scale are represented by sharp transitions. We derive quantitative estimates for the upper and the lower bound of the cost functional that penalizes all possible deviations and obtain explicit error terms which are valid also in the macroscopic scale. Furthermore, using the result of a companion paper about the minimizers of this cost functional for the macroscopic motion of the interface in a fixed time, we prove that the probability of such events can concentrate on nucleations should the transition happen fast enough

    Digital Integrator for Fast Accurate Measurement of Magnetic Flux by Rotating Coils

    Get PDF
    A fast digital integrator (FDI) with dynamic accuracy and a trigger frequency higher than those of a portable digital integrator (PDI), which is a state-of-the-art instrument for magnetic measurements based on rotating coils, was developed for analyzing superconducting magnets in particle accelerators. Results of static and dynamic metrological characterization show how the FDI prototype is already capable of overcoming the dynamic performance of PDI as well as covering operating regions that used to be inaccessibl
    • …