32,867 research outputs found

    Convex Banding of the Covariance Matrix

    Full text link
    We introduce a new sparse estimator of the covariance matrix for high-dimensional models in which the variables have a known ordering. Our estimator, which is the solution to a convex optimization problem, is equivalently expressed as an estimator which tapers the sample covariance matrix by a Toeplitz, sparsely-banded, data-adaptive matrix. As a result of this adaptivity, the convex banding estimator enjoys theoretical optimality properties not attained by previous banding or tapered estimators. In particular, our convex banding estimator is minimax rate adaptive in Frobenius and operator norms, up to log factors, over commonly-studied classes of covariance matrices, and over more general classes. Furthermore, it correctly recovers the bandwidth when the true covariance is exactly banded. Our convex formulation admits a simple and efficient algorithm. Empirical studies demonstrate its practical effectiveness and illustrate that our exactly-banded estimator works well even when the true covariance matrix is only close to a banded matrix, confirming our theoretical results. Our method compares favorably with all existing methods, in terms of accuracy and speed. We illustrate the practical merits of the convex banding estimator by showing that it can be used to improve the performance of discriminant analysis for classifying sound recordings

    Improving carbon cycle projections for better carbon management

    Get PDF
    Forests absorb large amounts of carbon from the atmosphere through photosynthesis and store a significant fraction of the carbon in biomass and soils. A March 2016 workshop focused on how best to use modeling approaches, field measurements, and satellite observations to improve projections of carbon cycle dynamics in response to climate change and human activities

    Jointly Multiple Events Extraction via Attention-based Graph Information Aggregation

    Full text link
    Event extraction is of practical utility in natural language processing. In the real world, it is a common phenomenon that multiple events existing in the same sentence, where extracting them are more difficult than extracting a single event. Previous works on modeling the associations between events by sequential modeling methods suffer a lot from the low efficiency in capturing very long-range dependencies. In this paper, we propose a novel Jointly Multiple Events Extraction (JMEE) framework to jointly extract multiple event triggers and arguments by introducing syntactic shortcut arcs to enhance information flow and attention-based graph convolution networks to model graph information. The experiment results demonstrate that our proposed framework achieves competitive results compared with state-of-the-art methods.Comment: accepted by EMNLP 201