39 research outputs found

    Simple to Complex Cross-modal Learning to Rank

    Get PDF
    The heterogeneity-gap between different modalities brings a significant challenge to multimedia information retrieval. Some studies formalize the cross-modal retrieval tasks as a ranking problem and learn a shared multi-modal embedding space to measure the cross-modality similarity. However, previous methods often establish the shared embedding space based on linear mapping functions which might not be sophisticated enough to reveal more complicated inter-modal correspondences. Additionally, current studies assume that the rankings are of equal importance, and thus all rankings are used simultaneously, or a small number of rankings are selected randomly to train the embedding space at each iteration. Such strategies, however, always suffer from outliers as well as reduced generalization capability due to their lack of insightful understanding of procedure of human cognition. In this paper, we involve the self-paced learning theory with diversity into the cross-modal learning to rank and learn an optimal multi-modal embedding space based on non-linear mapping functions. This strategy enhances the model's robustness to outliers and achieves better generalization via training the model gradually from easy rankings by diverse queries to more complex ones. An efficient alternative algorithm is exploited to solve the proposed challenging problem with fast convergence in practice. Extensive experimental results on several benchmark datasets indicate that the proposed method achieves significant improvements over the state-of-the-arts in this literature.Comment: 14 pages; Accepted by Computer Vision and Image Understandin

    Noisy Correspondence Learning with Meta Similarity Correction

    Full text link
    Despite the success of multimodal learning in cross-modal retrieval task, the remarkable progress relies on the correct correspondence among multimedia data. However, collecting such ideal data is expensive and time-consuming. In practice, most widely used datasets are harvested from the Internet and inevitably contain mismatched pairs. Training on such noisy correspondence datasets causes performance degradation because the cross-modal retrieval methods can wrongly enforce the mismatched data to be similar. To tackle this problem, we propose a Meta Similarity Correction Network (MSCN) to provide reliable similarity scores. We view a binary classification task as the meta-process that encourages the MSCN to learn discrimination from positive and negative meta-data. To further alleviate the influence of noise, we design an effective data purification strategy using meta-data as prior knowledge to remove the noisy samples. Extensive experiments are conducted to demonstrate the strengths of our method in both synthetic and real-world noises, including Flickr30K, MS-COCO, and Conceptual Captions.Comment: Accepted at CVPR 202

    KCD: Knowledge Walks and Textual Cues Enhanced Political Perspective Detection in News Media

    Full text link
    Political perspective detection has become an increasingly important task that can help combat echo chambers and political polarization. Previous approaches generally focus on leveraging textual content to identify stances, while they fail to reason with background knowledge or leverage the rich semantic and syntactic textual labels in news articles. In light of these limitations, we propose KCD, a political perspective detection approach to enable multi-hop knowledge reasoning and incorporate textual cues as paragraph-level labels. Specifically, we firstly generate random walks on external knowledge graphs and infuse them with news text representations. We then construct a heterogeneous information network to jointly model news content as well as semantic, syntactic and entity cues in news articles. Finally, we adopt relational graph neural networks for graph-level representation learning and conduct political perspective detection. Extensive experiments demonstrate that our approach outperforms state-of-the-art methods on two benchmark datasets. We further examine the effect of knowledge walks and textual cues and how they contribute to our approach's data efficiency.Comment: accepted at NAACL 2022 main conferenc

    GADY: Unsupervised Anomaly Detection on Dynamic Graphs

    Full text link
    Anomaly detection on dynamic graphs refers to detecting entities whose behaviors obviously deviate from the norms observed within graphs and their temporal information. This field has drawn increasing attention due to its application in finance, network security, social networks, and more. However, existing methods face two challenges: dynamic structure constructing challenge - difficulties in capturing graph structure with complex time information and negative sampling challenge - unable to construct excellent negative samples for unsupervised learning. To address these challenges, we propose Unsupervised Generative Anomaly Detection on Dynamic Graphs (GADY). To tackle the first challenge, we propose a continuous dynamic graph model to capture the fine-grained information, which breaks the limit of existing discrete methods. Specifically, we employ a message-passing framework combined with positional features to get edge embeddings, which are decoded to identify anomalies. For the second challenge, we pioneer the use of Generative Adversarial Networks to generate negative interactions. Moreover, we design a loss function to alter the training goal of the generator while ensuring the diversity and quality of generated samples. Extensive experiments demonstrate that our proposed GADY significantly outperforms the previous state-of-the-art method on three real-world datasets. Supplementary experiments further validate the effectiveness of our model design and the necessity of each module
    corecore