10,607 research outputs found

    Effects of closed immersion filtered water flow velocity on the ablation threshold of bisphenol A polycarbonate during excimer laser machining

    Get PDF
    A closed flowing thick film filtered water immersion technique ensures a controlled geometry for both the optical interfaces of the flowing liquid film and allows repeatable control of flow-rate during machining. This has the action of preventing splashing, ensures repeatable machining conditions and allows control of liquid flow velocity. To investigate the impact of this technique on ablation threshold, bisphenol A polycarbonate samples have been machined using KrF excimer laser radiation passing through a medium of filtered water flowing at a number of flow velocities, that are controllable by modifying the liquid flow rates. An average decrease in ablation threshold of 7.5% when using turbulent flow velocity regime closed thick film filtered water immersed ablation, compared to ablation using a similar beam in ambient air; however, the use of laminar flow velocities resulted in negligible differences between closed flowing thick film filtered water immersion and ambient air. Plotting the recorded threshold fluence achieved with varying flow velocity showed that an optimum flow velocity of 3.00 m/s existed which yeilded a minimum ablation threshold of 112 mJ/cm2. This is attributed to the distortion of the ablation plume effected by the flowing immersion fluid changing the ablation mechanism: at laminar flow velocities Bremsstrahlung attenuation decreases etch rate, at excessive flow velocities the plume is completely destroyed, removing the effect of plume etching. Laminar flow velocity regime ablation is limited by slow removal of debris causing a non-linear etch rate over ‘n’ pulses which is a result of debris produced by one pulse remaining suspended over the feature for the next pulse. The impact of closed thick film filtered water immersed ablation is dependant upon beam fluence: high fluence beams achieved greater etch efficiency at high flow velocities as the effect of Bremsstrahlung attenuation is removed by the action of the fluid on the plume; low fluences loose efficiency as the beam makes proportionally large fluence losses at it passes through the chamber window and immersion medium

    Still Broken: New York State Legislative Reform

    Get PDF
    Still Broken: New York State Legislative Reform is the 2008 update of the Brennan Center's 2004 and 2006 reports on the New York state legislative process. The report finds that the legislative process remains broken, and offers concrete recommendations for reform

    Determination of the absorption length of CO2, Nd:YAG and high power diode laser radiation for a selected grouting material

    Get PDF
    The laser beam absorption lengths of CO2, Nd:YAG and a high power diode laser (HPDL) radiation for a newly developed SiO2/Al2O3-based tile grout have been determined through the application of Beer-Lambert’s law. The findings revealed marked differences in the absorption lengths despite the material having similar beam absorption coefficients for the lasers. The absorption lengths for the SiO2/Al2O3-based tile grout for CO2, Nd:YAG and HPDL radiation were calculated as being 23211 m, 1934 m and 1838 m respectively. Moreover, this method of laser beam absorption length determination, which has hitherto been used predominantly with lasers operated in the pulsed mode, is shown to be valid for use with lasers operated in the continuous wave (CW) mode, depending upon the material being treated

    Identification of the principal elements governing the wettability characteristics of ordinary Portland cement following high power diode laser surface treatment

    Get PDF
    The elements governing modifications to the wettability characteristics of ordinary Portland cement (OPC) following high power diode laser (HPDL) surface treatment have been identified. Changes in the contact angle, , and hence the wettability characteristics of the OPC after HPDL treatment were attributed to: reductions in the surface roughness of the OPC; the increase in the surface O2 content of the ceramic and the increase in the polar component of the surface energy, . What is more, the degree of influence exerted by each element has been qualitatively ascertained and was found to differ markedly. Surface energy, by way of microstructural changes, was found to be by far the most predominant element governing the wetting characteristics of the OPC. To a much lesser extent, surface O2 content, by way of process gas, was also seen to influence to a changes in the wettability characteristics of the OPC, whilst surface roughness was found to play a minor role in inducing changes in the wettability characteristics
    • 

    corecore