22,811 research outputs found

    Electron dynamics in the normal state of cuprates: spectral function, Fermi surface and ARPES data

    Get PDF
    An influence of the electron-phonon interaction on excitation spectrum and damping in a narrow band electron subsystem of cuprates has been investigated. Within the framework of the t-J model an approach to solving a problem of account of both strong electron correlations and local electron-phonon binding with characteristic Einstein mode ω0\omega _0 in the normal state has been presented. In approximation Hubbard-I it was found an exact solution to the polaron bands. We established that in the low-dimensional system with a pure kinematic part of Hamiltonian a complicated excitation spectrum is realized. It is determined mainly by peculiarities of the lattice Green's function. In the definite area of the electron concentration and hopping integrals a correlation gap may be possible on the Fermi level. Also, in specific cases it is observed a doping evolution of the Fermi surface. We found that the strong electron-phonon binding enforces a degree of coherence of electron-polaron excitations near the Fermi level and spectrum along the nodal direction depends on wave vector module weakly. It corresponds to ARPES data. A possible origin of the experimentally observed kink in the nodal direction of cuprates is explained by fine structure of the polaron band to be formed near the mode -ω0\omega _0

    Tunable graphene bandgaps from superstrate mediated interactions

    Full text link
    A theory is presented for the strong enhancement of graphene-on-substrate bandgaps by attractive interactions mediated through phonons in a polarizable superstrate. It is demonstrated that gaps of up to 1eV can be formed for experimentally achievable values of electron-phonon coupling and phonon frequency. Gap enhancements range between 1 and 4, indicating possible benefits to graphene electronics through greater bandgap control for digital applications, lasers, LEDs and photovoltaics through the relatively simple application of polarizable materials such as SiO2 and Si3N4.Comment: 4 pages, 4 figures, to appear in Phys. Rev.

    Bipolaron-SO(5) Non-Fermi Liquid in a Two-channel Anderson Model with Phonon-assisted Hybridizations

    Full text link
    We analyze non-Fermi liquid (NFL) properties along a line of critical points in a two-channel Anderson model with phonon-assisted hybridizations. We succeed in identifying hidden nonmagnetic SO(5) degrees of freedom for valence-fluctuation regime and analyze the model on the basis of boundary conformal field theory. We find that the NFL spectra along the critical line, which is the same as those in the two-channel Kondo model, can be alternatively derived by a fusion in the nonmagnetic SO(5) sector. The leading irrelevant operators near the NFL fixed points vary as a function of Coulomb repulsion U; operators in the spin sector dominate for large U, while those in the SO(5) sector do for small U, and we confirm this variation in our numerical renormalization group calculations. As a result, the thermodynamic singularity for small U differs from that of the conventional two-channel Kondo problem. Especially, the impurity contribution to specific heat is proportional to temperature and bipolaron fluctuations, which are coupled electron-phonon fluctuations, diverge logarithmically at low temperatures for small U.Comment: 16 pages, 4 figures, 3 table

    Influence of Anomalous Dispersion on Optical Characteristics of Quantum Wells

    Full text link
    Frequency dependencies of optical characteristics (reflection, transmission and absorption of light) of a quantum well are investigated in a vicinity of interband resonant transitions in a case of two closely located excited energy levels. A wide quantum well in a quantizing magnetic field directed normally to the quantum-well plane, and monochromatic stimulating light are considered. Distinctions between refraction coefficients of barriers and quantum well, and a spatial dispersion of the light wave are taken into account. It is shown that at large radiative lifetimes of excited states in comparison with nonradiative lifetimes, the frequency dependence of the light reflection coefficient in the vicinity of resonant interband transitions is defined basically by a curve, similar to the curve of the anomalous dispersion of the refraction coefficient. The contribution of this curve weakens at alignment of radiative and nonradiative times, it is practically imperceptible at opposite ratio of lifetimes . It is shown also that the frequency dependencies similar to the anomalous dispersion do not arise in transmission and absorption coefficients.Comment: 10 pages, 6 figure

    Effect of the Spatial Dispersion on the Shape of a Light Pulse in a Quantum Well

    Full text link
    Reflectance, transmittance and absorbance of a symmetric light pulse, the carrying frequency of which is close to the frequency of interband transitions in a quantum well, are calculated. Energy levels of the quantum well are assumed discrete, and two closely located excited levels are taken into account. A wide quantum well (the width of which is comparable to the length of the light wave, corresponding to the pulse carrying frequency) is considered, and the dependance of the interband matrix element of the momentum operator on the light wave vector is taken into account. Refractive indices of barriers and quantum well are assumed equal each other. The problem is solved for an arbitrary ratio of radiative and nonradiative lifetimes of electronic excitations. It is shown that the spatial dispersion essentially affects the shapes of reflected and transmitted pulses. The largest changes occur when the radiative broadening is close to the difference of frequencies of interband transitions taken into account.Comment: 7 pages, 5 figure

    Elastic Light Scattering by Semiconductor Quantum Dots

    Full text link
    Elastic light scattering by low-dimensional semiconductor objects is investigated theoretically. The differential cross section of resonant light scattering on excitons in quantum dots is calculated. The polarization and angular distribution of scattered light do not depend on the quantum-dot form, sizes and potential configuration if light wave lengths exceed considerably the quantum-dot size. In this case the magnitude of the total light scattering cross section does not depend on quantum-dot sizes. The resonant total light scattering cross section is about a square of light wave length if the exciton radiative broadening exceeds the nonradiative broadening. Radiative broadenings are calculated

    Transmission of a Symmetric Light Pulse through a Wide QW

    Full text link
    The reflection, transmission and absorption of a symmetric electromagnetic pulse, which carrying frequency is close to the frequency of an interband transition in a QW (QW), are obtained. The energy levels of a QW are assumed discrete, one exited level is taken into account. The case of a wide QW is considered when a length of the pulse wave, appropriate to the carrying frequency, is comparable to the QW's width. In figures the time dependencies of the dimensionless reflection, absorption are transmission are represented. It is shown, that the spatial dispersion and a distinction in refraction indexes influence stronger reflection.Comment: 8 pages,8 figures with caption

    Quantum quenches and driven dynamics in a single-molecule device

    Full text link
    The nonequilibrium dynamics of molecular devices is studied in the framework of a generic model for single-molecule transistors: a resonant level coupled by displacement to a single vibrational mode. In the limit of a broad level and in the vicinity of the resonance, the model can be controllably reduced to a form quadratic in bosonic operators, which in turn is exactly solvable. The response of the system to a broad class of sudden quenches and ac drives is thus computed in a nonperturbative manner, providing an asymptotically exact solution in the limit of weak electron-phonon coupling. From the analytic solution we are able to (1) explicitly show that the system thermalizes following a local quantum quench, (2) analyze in detail the time scales involved, (3) show that the relaxation time in response to a quantum quench depends on the observable in question, and (4) reveal how the amplitude of long-time oscillations evolves as the frequency of an ac drive is tuned across the resonance frequency. Explicit analytical expressions are given for all physical quantities and all nonequilibrium scenarios under study.Comment: 23 pages, 13 figure

    Principals of the theory of light reflection and absorption by low-dimensional semiconductor objects in quantizing magnetic fields at monochromatic and pulse excitations

    Full text link
    The bases of the theory of light reflection and absorption by low-dimensional semiconductor objects (quantum wells, wires and dots) at both monochromatic and pulse irradiations and at any form of light pulses are developed. The semiconductor object may be placed in a stationary quantizing magnetic field. As an example the case of normal light incidence on a quantum well surface is considered. The width of the quantum well may be comparable to the light wave length and number of energy levels of electronic excitations is arbitrary. For Fourier-components of electric fields the integral equation (similar to the Dyson-equation) and solutions of this equation for some individual cases are obtained.Comment: 14 page