6,706 research outputs found

    Neutron irradiation effect on SiPMs up to Φneq\Phi_{neq} = 5 ×\times 1014^{14} cm−2^{-2}

    Full text link
    Silicon Photo-Multipliers (SiPM) are becoming the photo-detector of choice for increasingly more particle detection applications, from fundamental physics to medical and societal applications. One major consideration for their use at high-luminosity colliders is the radiation damage induced by hadrons, which leads to a dramatic increase of the dark count rate. KETEK SiPMs have been exposed to various fluences of reactor neutrons up to Φneq\Phi_{neq} = 5×\times1014^{14} cm−2^{-2} (1 MeV equivalent neutrons). Results from the I-V, and C-V measurements for temperatures between −-30∘^\circC and ++30∘^\circC are presented. We propose a new method to quantify the effect of radiation damage on the SiPM performance. Using the measured dark current the single pixel occupation probability as a function of temperature and excess voltage is determined. From the pixel occupation probability the operating conditions for given requirements can be optimized. The method is qualitatively verified using current measurements with the SiPM illuminated by blue LED light

    Properties of a radiation-induced charge multiplication region in epitaxial silicon diodes

    Full text link
    Charge multiplication (CM) in p+^+n epitaxial silicon pad diodes of 75, 100 and 150 \upmum thickness at high voltages after proton irradiation with 1 MeV neutron equivalent fluences in the order of 101610^{16} cm−2^{-2} was studied as an option to overcome the strong trapping of charge carriers in the innermost tracking region of future Super-LHC detectors. Charge collection efficiency (CCE) measurements using the Transient Current Technique (TCT) with radiation of different penetration (670, 830, 1060 nm laser light and α\alpha-particles with optional absorbers) were used to locate the CM region close to the p+^+-implantation. The dependence of CM on material, thickness of the epitaxial layer, annealing and temperature was studied. The collected charge in the CM regime was found to be proportional to the deposited charge, uniform over the diode area and stable over a period of several days. Randomly occurring micro discharges at high voltages turned out to be the largest challenge for operation of the diodes in the CM regime. Although at high voltages an increase of the TCT baseline noise was observed, the signal-to-noise ratio was found to improve due to CM for laser light. Possible effects on the charge spectra measured with laser light due to statistical fluctuations in the CM process were not observed. In contrast, the relative width of the spectra increased in the case of α\alpha-particles, probably due to varying charge deposited in the CM region.Comment: 11 pages, accepted by NIM

    Study of X-ray Radiation Damage in Silicon Sensors

    Full text link
    The European X-ray Free Electron Laser (XFEL) will deliver 30,000 fully coherent, high brilliance X-ray pulses per second each with a duration below 100 fs. This will allow the recording of diffraction patterns of single complex molecules and the study of ultra-fast processes. Silicon pixel sensors will be used to record the diffraction images. In 3 years of operation the sensors will be exposed to doses of up to 1 GGy of 12 keV X-rays. At this X-ray energy no bulk damage in silicon is expected. However fixed oxide charges in the insulating layer covering the silicon and interface traps at the Si-SiO2 interface will be introduced by the irradiation and build up over time. We have investigated the microscopic defects in test structures and the macroscopic electrical properties of segmented detectors as a function of the X-ray dose. From the test structures we determine the oxide charge density and the densities of interface traps as a function of dose. We find that both saturate (and even decrease) for doses between 10 and 100 MGy. For segmented sensors the defects introduced by the X-rays increase the full depletion voltage, the surface leakage current and the inter-pixel capacitance. We observe that an electron accumulation layer forms at the Si-SiO2 interface. Its width increases with dose and decreases with applied bias voltage. Using TCAD simulations with the dose dependent parameters obtained from the test structures, we are able to reproduce the observed results. This allows us to optimize the sensor design for the XFEL requirements

    Optimization of the Radiation Hardness of Silicon Pixel Sensors for High X-ray Doses using TCAD Simulations

    Full text link
    The European X-ray Free Electron Laser (XFEL) will deliver 27000 fully coherent, high brilliance X-ray pulses per second each with a duration below 100 fs. This will allow the recording of diffraction patterns of single molecules and the study of ultra-fast processes. One of the detector systems under development for the XFEL is the Adaptive Gain Integrating Pixel Detector (AGIPD), which consists of a pixel array with readout ASICs bump-bonded to a silicon sensor with pixels of 200 {\mu}m \times 200 {\mu}m. The particular requirements for the detector are a high dynamic range (0, 1 up to 10E5 12 keV photons/XFEL-pulse), a fast read-out and radiation tolerance up to doses of 1 GGy of 12 keV X-rays for 3 years of operation. At this X-ray energy no bulk damage in silicon is expected. However fixed oxide charges in the SiO2 layer and interface traps at the Si-SiO2 interface will build up. As function of the 12 keV X-ray dose the microscopic defects in test structures and the macro- scopic electrical properties of segmented sensors have been investigated. From the test structures the oxide charge density, the density of interface traps and their properties as function of dose have been determined. It is found that both saturate (and even decrease) for doses above a few MGy. For segmented sensors surface damage introduced by the X-rays increases the full depletion voltage, the surface leakage current and the inter-pixel capacitance. In addition an electron accumulation layer forms at the Si-SiO2 interface which increases with dose and decreases with applied voltage. Using TCAD simulations with the dose dependent damage parameters obtained from the test struc- tures the results of the measurements can be reproduced. This allows the optimization of the sensor design for the XFEL requirements
    • …
    corecore