30 research outputs found

    Polarized 3D: High-Quality Depth Sensing with Polarization Cues

    Get PDF
    Coarse depth maps can be enhanced by using the shape information from polarization cues. We propose a framework to combine surface normals from polarization (hereafter polarization normals) with an aligned depth map. Polarization normals have not been used for depth enhancement before. This is because polarization normals suffer from physics-based artifacts, such as azimuthal ambiguity, refractive distortion and fronto-parallel signal degradation. We propose a framework to overcome these key challenges, allowing the benefits of polarization to be used to enhance depth maps. Our results demonstrate improvement with respect to state-of-the-art 3D reconstruction techniques.Charles Stark Draper Laboratory (Doctoral Fellowship)Singapore. Ministry of Education (Academic Research Foundation MOE2013-T2-1-159)Singapore. National Research Foundation (Singapore University of Technology and Design

    MIME: Minority Inclusion for Majority Group Enhancement of AI Performance

    Full text link
    Several papers have rightly included minority groups in artificial intelligence (AI) training data to improve test inference for minority groups and/or society-at-large. A society-at-large consists of both minority and majority stakeholders. A common misconception is that minority inclusion does not increase performance for majority groups alone. In this paper, we make the surprising finding that including minority samples can improve test error for the majority group. In other words, minority group inclusion leads to majority group enhancements (MIME) in performance. A theoretical existence proof of the MIME effect is presented and found to be consistent with experimental results on six different datasets. Project webpage: https://visual.ee.ucla.edu/mime.htm

    Resolving Multi-path Interference in Time-of-Flight Imaging via Modulation Frequency Diversity and Sparse Regularization

    Get PDF
    Time-of-flight (ToF) cameras calculate depth maps by reconstructing phase shifts of amplitude-modulated signals. For broad illumination or transparent objects, reflections from multiple scene points can illuminate a given pixel, giving rise to an erroneous depth map. We report here a sparsity regularized solution that separates K-interfering components using multiple modulation frequency measurements. The method maps ToF imaging to the general framework of spectral estimation theory and has applications in improving depth profiles and exploiting multiple scattering.Comment: 11 Pages, 4 figures, appeared with minor changes in Optics Letter

    Coded time of flight cameras: sparse deconvolution to address multipath interference and recover time profiles

    Get PDF
    Time of flight cameras produce real-time range maps at a relatively low cost using continuous wave amplitude modulation and demodulation. However, they are geared to measure range (or phase) for a single reflected bounce of light and suffer from systematic errors due to multipath interference. We re-purpose the conventional time of flight device for a new goal: to recover per-pixel sparse time profiles expressed as a sequence of impulses. With this modification, we show that we can not only address multipath interference but also enable new applications such as recovering depth of near-transparent surfaces, looking through diffusers and creating time-profile movies of sweeping light. Our key idea is to formulate the forward amplitude modulated light propagation as a convolution with custom codes, record samples by introducing a simple sequence of electronic time delays, and perform sparse deconvolution to recover sequences of Diracs that correspond to multipath returns. Applications to computer vision include ranging of near-transparent objects and subsurface imaging through diffusers. Our low cost prototype may lead to new insights regarding forward and inverse problems in light transport.United States. Defense Advanced Research Projects Agency (DARPA Young Faculty Award)Alfred P. Sloan Foundation (Fellowship)Massachusetts Institute of Technology. Media Laboratory. Camera Culture Grou

    Making Thermal Imaging More Equitable and Accurate: Resolving Solar Loading Biases

    Full text link
    Thermal cameras and thermal point detectors are used to measure the temperature of human skin. These are important devices that are used everyday in clinical and mass screening settings, particularly in an epidemic. Unfortunately, despite the wide use of thermal sensors, the temperature estimates from thermal sensors do not work well in uncontrolled scene conditions. Previous work has studied the effect of wind and other environment factors on skin temperature, but has not considered the heating effect from sunlight, which is termed solar loading. Existing device manufacturers recommend that a subject who has been outdoors in sun re-acclimate to an indoor environment after a waiting period. The waiting period, up to 30 minutes, is insufficient for a rapid screening tool. Moreover, the error bias from solar loading is greater for darker skin tones since melanin absorbs solar radiation. This paper explores two approaches to address this problem. The first approach uses transient behavior of cooling to more quickly extrapolate the steady state temperature. A second approach explores the spatial modulation of solar loading, to propose single-shot correction with a wide-field thermal camera. A real world dataset comprising of thermal point, thermal image, subjective, and objective measurements of melanin is collected with statistical significance for the effect size observed. The single-shot correction scheme is shown to eliminate solar loading bias in the time of a typical frame exposure (33ms)