15 research outputs found

    New epoxy composites with enhanced thermal conductivity keeping electrical insulation

    Get PDF
    La tendència creixent a la indústria electrònica de fer aparells cada vegada més petits, més lleugers i que treballin més ràpid provoca un augment de calor generat per efecte Joule, degut a l’augment de freqüència del pas d’electrons. Eliminar aquest excés de calor requereix la millora de la conductivitat tèrmica dels materials ja existents, ja que el mantenir la temperatura de treball d’aquests dispositius està directament relacionat amb l’eficiència, el temps de vida útil i la prevenció de fallades prematures dels equips. Alguns elements dels dispositius electrònics es recobreixen amb reïnes termoestables epoxídiques. Per aquesta raó, augmentar la conductivitat tèrmica d’aquestes reïnes, aïllants per naturalesa, mantenint l’aïllament elèctric, resulta de gran importància en diverses indústries com l’electrònica i l’elèctrica. El mètode més senzill i econòmic per assolir aquest propòsit és mitjançant l’addició de partícules a la matriu polimèrica. En aquesta tesis doctoral s’han utilitzat diferents tipus de partícules per aconseguir els objectius en diverses matrius epoxídiques: nitrur de bor (BN), alúmina (Al2O3), nitrur d’alumini (AlN), carbur de silici (SiC), grafit expandit (EG) i nanotubs de carboni (CNTs). Experimentalment, s’ha determinat la influència que cada material afegit té sobre les propietats finals dels materials compostos, especialment de les característiques mecàniques, tèrmiques i elèctriques. El millor resultat obtingut pels objectius proposats ha estat la combinació del 70 % en pes de BN i un 2.5 i 5 % en pes de EG, arribant a més d’un 1600 % de millora en conductivitat tèrmica respecte el material de partida. Les conductivitats tèrmiques obtingudes han estat de 2,08 i 2,22 W/m·K, respectivament. A més, aquests materials han mantingut resistivitats elèctriques prou bones, al voltant de 10^10 i 10^6 Ω·m respectivament.La tendencia de la industria electrónica de crear dispositivos cada vez más pequeños, más ligeros y que trabajen más rápido lleva a un aumento en la producción de calor generado por efecto Joule, debido al aumento de la frecuencia de paso de los electrones. Eliminar este exceso de calor lleva a la necesidad de mejorar la conductividad térmica de los materiales ya existentes, ya que limitar la temperatura de trabajo de los dispositivos está directamente relacionada con su eficiencia, su tiempo de vida útil y previene la aparición de fallos prematuros de los equipos. Algunos elementos de estos dispositivos están recubiertos de resina termoestable epoxídica. Por esta razón, aumentar la conductividad térmica de estas resinas, aislantes por naturaleza, resulta de gran importancia en varias industrias como la electrónica y la eléctrica. El método más simple y económico para alcanzar este propósito es mediante la adición de partículas a la matriz polimérica. En esta tesis doctoral se han utilizado diferentes tipos de partículas en varias matrices epoxídicas: nitruro de boro (BN), alúmina (Al2O3), nitruro de aluminio (AlN), carburo de silicio (SiC), grafito expandido (EG) y nanotubos de carbono (CNTs). Se ha determinado experimentalmente la influencia de cada material añadido en las propiedades finales de los materiales compuestos, especialmente en sus características mecánicas, térmicas y eléctricas. El mejor resultado obtenido en cuanto a los objetivos propuestos ha sido la combinación del 70 % en peso de BN y un 2.5 y 5 % en peso de EG, alcanzando más de un 1600 % de mejora en conductividad térmica respecto al material de partida. Las conductividades térmicas alcanzadas han sido de 2,08 y 2,22 W/m·K respectivamente. Además, estos materiales han mantenido unas resistividades eléctricas suficientes, alrededor de 10^10 y 10^6 Ω·m, respectivamente.The tendency in electronics to produce smaller and lighter devices with higher power output causes an increase of the generated heat (Joule effect) by the increase in the frequency of electrons. Evolve this exceeding heat cause the need to improve some properties that existent materials do not meet, since keeping the working temperature of these devices is directly related to efficiency, useful lifetime and prevention of premature equipment failures. Some elements of these devices are coated by epoxy resins and this is the reason why enhance the thermal conductivity of them, insulators by nature, is of great importance in several industries such as electronics and electrical. The most economic and simple technique to face this issue is still today through the addition of high thermal conductive fillers. In this doctoral thesis, boron nitride (BN), alumina (Al2O3), aluminum nitride (AlN), silicon carbide (SiC), expanded graphite (EG) and carbon nanotubes (CNTs) have been used. Experimentally, the influence of each filler has been determined in the final composites, especially in the thermal, mechanic and electric characteristics. The materials with the best performances in the proposed objectives were those of homopolymerized cycloaliphatic epoxy resin with the combined addition of 70 wt. % of BN platelets and 2.5 and 5 wt. % of EG. The values of thermal conductivity improved by more than 1600 % in reference to the neat epoxy and were 2.08 and 2.22 W/m·K, respectively. These materials also kept enough electrical insulation, in the range of 10^10 and 10^6 Ω·m, respectively

    Digital light processing-3D printing of thermoset materials with high biodegradability from amino acid-derived acrylamide monomers

    Get PDF
    Six acrylamide resins, derived from l-phenylalanine and l-leucine, are designed for application in digital light processing (DLP) printers to obtain biodegradable thermoset polymers. The acrylamide copolymers are prepared under light irradiation at 405 nm and thermal post-curing processes. Low molecular weight poly(ethylene glycol)diacrylate (PEGDA) and N,N-dimethylacrylamide (DMAM), both liquid resins, are used as co-monomers and diluents for the amino acid-derived acrylamide solubilization. The presence of two phenylalanine units and two ester groups in the acrylamide monomer accuses a fast degradation rate in hydrolytic medium in 90 days. The residual products leached in the aqueous media prove to be non-cytotoxic, when 3D-printed samples are cultured with osteoblast cells (MG63), which represents an advantage for the safe disposal of printer waste materials. The scaled-up pieces derived from l-phenylalanine and diethylene glycol, as amino acid-derived acrylamide (named compound C), PEGDA and DMAM, present high dimensional stability after DLP printing of complex structures used as testing samples. Layers of 50 µm of thickness are well cohesive having isotropic behavior, as demonstrated with tensile-strain measurements performed in X–Y–Z (plane) directions. The compound C, which contains phenylalanine amino acid, reveals a promising potential to replace non-biodegradable acrylate polymers used in prototyping systems.Postprint (author's final draft

    New epoxy composites with enhanced thermal conductivity keeping electrical insulation

    Full text link
    La tendència creixent a la indústria electrònica de fer aparells cada vegada més petits, més lleugers i que treballin més ràpid provoca un augment de calor generat per efecte Joule, degut a l’augment de freqüència del pas d’electrons. Eliminar aquest excés de calor requereix la millora de la conductivitat tèrmica dels materials ja existents, ja que el mantenir la temperatura de treball d’aquests dispositius està directament relacionat amb l’eficiència, el temps de vida útil i la prevenció de fallades prematures dels equips. Alguns elements dels dispositius electrònics es recobreixen amb reïnes termoestables epoxídiques. Per aquesta raó, augmentar la conductivitat tèrmica d’aquestes reïnes, aïllants per naturalesa, mantenint l’aïllament elèctric, resulta de gran importància en diverses indústries com l’electrònica i l’elèctrica. El mètode més senzill i econòmic per assolir aquest propòsit és mitjançant l’addició de partícules a la matriu polimèrica. En aquesta tesis doctoral s’han utilitzat diferents tipus de partícules per aconseguir els objectius en diverses matrius epoxídiques: nitrur de bor (BN), alúmina (Al2O3), nitrur d’alumini (AlN), carbur de silici (SiC), grafit expandit (EG) i nanotubs de carboni (CNTs). Experimentalment, s’ha determinat la influència que cada material afegit té sobre les propietats finals dels materials compostos, especialment de les característiques mecàniques, tèrmiques i elèctriques. El millor resultat obtingut pels objectius proposats ha estat la combinació del 70 % en pes de BN i un 2.5 i 5 % en pes de EG, arribant a més d’un 1600 % de millora en conductivitat tèrmica respecte el material de partida. Les conductivitats tèrmiques obtingudes han estat de 2,08 i 2,22 W/m·K, respectivament. A més, aquests materials han mantingut resistivitats elèctriques prou bones, al voltant de 10^10 i 10^6 Ω·m respectivament.La tendencia de la industria electrónica de crear dispositivos cada vez más pequeños, más ligeros y que trabajen más rápido lleva a un aumento en la producción de calor generado por efecto Joule, debido al aumento de la frecuencia de paso de los electrones. Eliminar este exceso de calor lleva a la necesidad de mejorar la conductividad térmica de los materiales ya existentes, ya que limitar la temperatura de trabajo de los dispositivos está directamente relacionada con su eficiencia, su tiempo de vida útil y previene la aparición de fallos prematuros de los equipos. Algunos elementos de estos dispositivos están recubiertos de resina termoestable epoxídica. Por esta razón, aumentar la conductividad térmica de estas resinas, aislantes por naturaleza, resulta de gran importancia en varias industrias como la electrónica y la eléctrica. El método más simple y económico para alcanzar este propósito es mediante la adición de partículas a la matriz polimérica. En esta tesis doctoral se han utilizado diferentes tipos de partículas en varias matrices epoxídicas: nitruro de boro (BN), alúmina (Al2O3), nitruro de aluminio (AlN), carburo de silicio (SiC), grafito expandido (EG) y nanotubos de carbono (CNTs). Se ha determinado experimentalmente la influencia de cada material añadido en las propiedades finales de los materiales compuestos, especialmente en sus características mecánicas, térmicas y eléctricas. El mejor resultado obtenido en cuanto a los objetivos propuestos ha sido la combinación del 70 % en peso de BN y un 2.5 y 5 % en peso de EG, alcanzando más de un 1600 % de mejora en conductividad térmica respecto al material de partida. Las conductividades térmicas alcanzadas han sido de 2,08 y 2,22 W/m·K respectivamente. Además, estos materiales han mantenido unas resistividades eléctricas suficientes, alrededor de 10^10 y 10^6 Ω·m, respectivamente.The tendency in electronics to produce smaller and lighter devices with higher power output causes an increase of the generated heat (Joule effect) by the increase in the frequency of electrons. Evolve this exceeding heat cause the need to improve some properties that existent materials do not meet, since keeping the working temperature of these devices is directly related to efficiency, useful lifetime and prevention of premature equipment failures. Some elements of these devices are coated by epoxy resins and this is the reason why enhance the thermal conductivity of them, insulators by nature, is of great importance in several industries such as electronics and electrical. The most economic and simple technique to face this issue is still today through the addition of high thermal conductive fillers. In this doctoral thesis, boron nitride (BN), alumina (Al2O3), aluminum nitride (AlN), silicon carbide (SiC), expanded graphite (EG) and carbon nanotubes (CNTs) have been used. Experimentally, the influence of each filler has been determined in the final composites, especially in the thermal, mechanic and electric characteristics. The materials with the best performances in the proposed objectives were those of homopolymerized cycloaliphatic epoxy resin with the combined addition of 70 wt. % of BN platelets and 2.5 and 5 wt. % of EG. The values of thermal conductivity improved by more than 1600 % in reference to the neat epoxy and were 2.08 and 2.22 W/m·K, respectively. These materials also kept enough electrical insulation, in the range of 10^10 and 10^6 Ω·m, respectively

    Thermoconductive Thermosetting Composites Based on Boron Nitride Fillers and Thiol-Epoxy Matrices

    Full text link
    In this work, the effect of the addition of boron nitride (BN) fillers in a thiol-cycloaliphatic epoxy formulation has been investigated. Calorimetric studies put into evidence that the kinetics of the curing has been scarcely affected and that the addition of particles does not affect the final structure of the network. Rheologic studies have shown the increase in the viscoelastic properties on adding the filler and allow the percolation threshold to be calculated, which was found to be 35.5%. The use of BN agglomerates of bigger size increases notably the viscosity of the formulation. Glass transition temperatures are not affected by the filler added, but Young’s modulus and hardness have been notably enhanced. Thermal conductivity of the composites prepared shows a linear increase with the proportion of BN particle sheets added, reaching a maximum of 0.97 W/K·m. The addition of 80 μm agglomerates, allowed to increase this value until 1.75 W/K·m

    New BN-epoxy composites obtained by thermal latent cationic curing with enhanced thermal conductivity

    Get PDF
    A series of boron nitride (BN) composites, with different BN content, were prepared and characterized by cationic curing of DGEBA/BN formulations. As cationic initiator a commercial benzylanilinium salt was used. This cationic system shows good latent characteristics that were not lost on adding the filler. The performance of the catalytic system was optimized by varying the amount of initiator and adding little proportions of glycerol. The kinetics of the curing process was evaluated by calorimetric measurements. The addition of BN allowed increasing thermal conductivity without loss of mechanical properties like Young modulus, impact resistance, adhesion and other thermal characteristics like Tg or thermal stability. In addition, dielectric properties were improved with the increment of filler.Postprint (author's final draft

    New epoxy composite thermosets with enhanced thermal conductivity and high Tg obtained by cationic homopolymerization

    Full text link
    Thermal dissipation is a critical aspect for the performance and lifetime of electronic devices. In this work, novel composites based on a cycloaliphatic epoxy matrix and BN fillers, obtained by cationic curing of mixtures of 3,4-epoxy cyclohexylmethyl 3,4-epoxy cyclohexane carboxylate (ECC) with several amounts of hexagonal boron nitride (BN) were prepared and characterized. As cationic initiator a commercial benzylanilinium salt was used, which by addition of triethanolamine, exhibited an excellent latent character and storage stability. The effect of the formulation composition was studied by calorimetry and rheological measurements. The variation of thermal conductivity, thermal stability, thermal expansion coefficient, and thermomechanical and mechanical properties of the composites with the load of BN filler (ranging from 10 to 40 wt%) was evaluated. An improvement of an 800% (1.04 W/m·K) in thermal conductivity was reached in materials with glass transition temperatures >200°C without any loss in electrical insulation

    New epoxy composite thermosets with enhanced thermal conductivity and high Tg obtained by cationic homopolymerization

    Full text link
    Thermal dissipation is a critical aspect for the performance and lifetime of electronic devices. In this work, novel composites based on a cycloaliphatic epoxy matrix and BN fillers, obtained by cationic curing of mixtures of 3,4-epoxy cyclohexylmethyl 3,4-epoxy cyclohexane carboxylate (ECC) with several amounts of hexagonal boron nitride (BN) were prepared and characterized. As cationic initiator a commercial benzylanilinium salt was used, which by addition of triethanolamine, exhibited an excellent latent character and storage stability. The effect of the formulation composition was studied by calorimetry and rheological measurements. The variation of thermal conductivity, thermal stability, thermal expansion coefficient, and thermomechanical and mechanical properties of the composites with the load of BN filler (ranging from 10 to 40 wt%) was evaluated. An improvement of an 800% (1.04 W/m·K) in thermal conductivity was reached in materials with glass transition temperatures >200°C without any loss in electrical insulation

    Thermal Conductive Composites Prepared by Addition of Several Ceramic Fillers to Thermally Cationic Curing Cycloaliphatic Epoxy Resins

    Full text link
    Novel composite coatings prepared from 3,4-epoxy cyclohexylmethyl 3,4-epoxycyclohexane carboxylate (ECC) and different ceramic fillers have been prepared to improve the thermal dissipation of electronic devices. As latent cationic initiator, a benzylanilinium salt with triethanolamine has been used, which leads to a polyether matrix. Different proportions of Al2O3, AlN and SiC as fillers were added to the reactive formulation. The effect of the fillers selected and their proportions on the evolution of the curing was studied by calorimetry and rheometry. The thermal conductivity, thermal stability, thermal expansion coefficient and thermomechanical and mechanical properties of the composites were evaluated. An improvement of 820% in thermal conductivity in reference to the neat material was reached with a 75 wt % of AlN, whereas glass transition temperatures higher than 200 °C were determined in all the composites

    Thermoconductive thermosetting composites based on boron nitride fillers and thiol-epoxy matrices

    Get PDF
    In this work, the effect of the addition of boron nitride (BN) fillers in a thiol-cycloaliphatic epoxy formulation has been investigated. Calorimetric studies put into evidence that the kinetics of the curing has been scarcely affected and that the addition of particles does not affect the final structure of the network. Rheologic studies have shown the increase in the viscoelastic properties on adding the filler and allow the percolation threshold to be calculated, which was found to be 35.5%. The use of BN agglomerates of bigger size increases notably the viscosity of the formulation. Glass transition temperatures are not affected by the filler added, but Young’s modulus and hardness have been notably enhanced. Thermal conductivity of the composites prepared shows a linear increase with the proportion of BN particle sheets added, reaching a maximum of 0.97 W/K·m. The addition of 80 µm agglomerates, allowed to increase this value until 1.75 W/K·m

    Thermoconductive thermosetting composites based on boron nitride fillers and thiol-epoxy matrices

    Full text link
    In this work, the effect of the addition of boron nitride (BN) fillers in a thiol-cycloaliphatic epoxy formulation has been investigated. Calorimetric studies put into evidence that the kinetics of the curing has been scarcely affected and that the addition of particles does not affect the final structure of the network. Rheologic studies have shown the increase in the viscoelastic properties on adding the filler and allow the percolation threshold to be calculated, which was found to be 35.5%. The use of BN agglomerates of bigger size increases notably the viscosity of the formulation. Glass transition temperatures are not affected by the filler added, but Young’s modulus and hardness have been notably enhanced. Thermal conductivity of the composites prepared shows a linear increase with the proportion of BN particle sheets added, reaching a maximum of 0.97 W/K·m. The addition of 80 µm agglomerates, allowed to increase this value until 1.75 W/K·m
    corecore