2,452 research outputs found

    Robust Feature Selection by Mutual Information Distributions

    Full text link
    Mutual information is widely used in artificial intelligence, in a descriptive way, to measure the stochastic dependence of discrete random variables. In order to address questions such as the reliability of the empirical value, one must consider sample-to-population inferential approaches. This paper deals with the distribution of mutual information, as obtained in a Bayesian framework by a second-order Dirichlet prior distribution. The exact analytical expression for the mean and an analytical approximation of the variance are reported. Asymptotic approximations of the distribution are proposed. The results are applied to the problem of selecting features for incremental learning and classification of the naive Bayes classifier. A fast, newly defined method is shown to outperform the traditional approach based on empirical mutual information on a number of real data sets. Finally, a theoretical development is reported that allows one to efficiently extend the above methods to incomplete samples in an easy and effective way.Comment: 8 two-column page

    Distribution of Mutual Information from Complete and Incomplete Data

    Full text link
    Mutual information is widely used, in a descriptive way, to measure the stochastic dependence of categorical random variables. In order to address questions such as the reliability of the descriptive value, one must consider sample-to-population inferential approaches. This paper deals with the posterior distribution of mutual information, as obtained in a Bayesian framework by a second-order Dirichlet prior distribution. The exact analytical expression for the mean, and analytical approximations for the variance, skewness and kurtosis are derived. These approximations have a guaranteed accuracy level of the order O(1/n^3), where n is the sample size. Leading order approximations for the mean and the variance are derived in the case of incomplete samples. The derived analytical expressions allow the distribution of mutual information to be approximated reliably and quickly. In fact, the derived expressions can be computed with the same order of complexity needed for descriptive mutual information. This makes the distribution of mutual information become a concrete alternative to descriptive mutual information in many applications which would benefit from moving to the inductive side. Some of these prospective applications are discussed, and one of them, namely feature selection, is shown to perform significantly better when inductive mutual information is used.Comment: 26 pages, LaTeX, 5 figures, 4 table

    Learning about a Categorical Latent Variable under Prior Near-Ignorance

    Full text link
    It is well known that complete prior ignorance is not compatible with learning, at least in a coherent theory of (epistemic) uncertainty. What is less widely known, is that there is a state similar to full ignorance, that Walley calls near-ignorance, that permits learning to take place. In this paper we provide new and substantial evidence that also near-ignorance cannot be really regarded as a way out of the problem of starting statistical inference in conditions of very weak beliefs. The key to this result is focusing on a setting characterized by a variable of interest that is latent. We argue that such a setting is by far the most common case in practice, and we show, for the case of categorical latent variables (and general manifest variables) that there is a sufficient condition that, if satisfied, prevents learning to take place under prior near-ignorance. This condition is shown to be easily satisfied in the most common statistical problems.Comment: 15 LaTeX page

    Cable-Driven Actuation for Highly Dynamic Robotic Systems

    Full text link
    This paper presents design and experimental evaluations of an articulated robotic limb called Capler-Leg. The key element of Capler-Leg is its single-stage cable-pulley transmission combined with a high-gap radius motor. Our cable-pulley system is designed to be as light-weight as possible and to additionally serve as the primary cooling element, thus significantly increasing the power density and efficiency of the overall system. The total weight of active elements on the leg, i.e. the stators and the rotors, contribute more than 60% of the total leg weight, which is an order of magnitude higher than most existing robots. The resulting robotic leg has low inertia, high torque transparency, low manufacturing cost, no backlash, and a low number of parts. Capler-Leg system itself, serves as an experimental setup for evaluating the proposed cable- pulley design in terms of robustness and efficiency. A continuous jump experiment shows a remarkable 96.5 % recuperation rate, measured at the battery output. This means that almost all the mechanical energy output used during push-off returned back to the battery during touch-down

    Feedback MPC for Torque-Controlled Legged Robots

    Full text link
    The computational power of mobile robots is currently insufficient to achieve torque level whole-body Model Predictive Control (MPC) at the update rates required for complex dynamic systems such as legged robots. This problem is commonly circumvented by using a fast tracking controller to compensate for model errors between updates. In this work, we show that the feedback policy from a Differential Dynamic Programming (DDP) based MPC algorithm is a viable alternative to bridge the gap between the low MPC update rate and the actuation command rate. We propose to augment the DDP approach with a relaxed barrier function to address inequality constraints arising from the friction cone. A frequency-dependent cost function is used to reduce the sensitivity to high-frequency model errors and actuator bandwidth limits. We demonstrate that our approach can find stable locomotion policies for the torque-controlled quadruped, ANYmal, both in simulation and on hardware.Comment: Paper accepted to IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2019

    Limits of Learning about a Categorical Latent Variable under Prior Near-Ignorance

    Get PDF
    In this paper, we consider the coherent theory of (epistemic) uncertainty of Walley, in which beliefs are represented through sets of probability distributions, and we focus on the problem of modeling prior ignorance about a categorical random variable. In this setting, it is a known result that a state of prior ignorance is not compatible with learning. To overcome this problem, another state of beliefs, called \emph{near-ignorance}, has been proposed. Near-ignorance resembles ignorance very closely, by satisfying some principles that can arguably be regarded as necessary in a state of ignorance, and allows learning to take place. What this paper does, is to provide new and substantial evidence that also near-ignorance cannot be really regarded as a way out of the problem of starting statistical inference in conditions of very weak beliefs. The key to this result is focusing on a setting characterized by a variable of interest that is \emph{latent}. We argue that such a setting is by far the most common case in practice, and we provide, for the case of categorical latent variables (and general \emph{manifest} variables) a condition that, if satisfied, prevents learning to take place under prior near-ignorance. This condition is shown to be easily satisfied even in the most common statistical problems. We regard these results as a strong form of evidence against the possibility to adopt a condition of prior near-ignorance in real statistical problems.Comment: 27 LaTeX page

    Whole-Body MPC for a Dynamically Stable Mobile Manipulator

    Full text link
    Autonomous mobile manipulation offers a dual advantage of mobility provided by a mobile platform and dexterity afforded by the manipulator. In this paper, we present a whole-body optimal control framework to jointly solve the problems of manipulation, balancing and interaction as one optimization problem for an inherently unstable robot. The optimization is performed using a Model Predictive Control (MPC) approach; the optimal control problem is transcribed at the end-effector space, treating the position and orientation tasks in the MPC planner, and skillfully planning for end-effector contact forces. The proposed formulation evaluates how the control decisions aimed at end-effector tracking and environment interaction will affect the balance of the system in the future. We showcase the advantages of the proposed MPC approach on the example of a ball-balancing robot with a robotic manipulator and validate our controller in hardware experiments for tasks such as end-effector pose tracking and door opening

    Frequency-Aware Model Predictive Control

    Full text link
    Transferring solutions found by trajectory optimization to robotic hardware remains a challenging task. When the optimization fully exploits the provided model to perform dynamic tasks, the presence of unmodeled dynamics renders the motion infeasible on the real system. Model errors can be a result of model simplifications, but also naturally arise when deploying the robot in unstructured and nondeterministic environments. Predominantly, compliant contacts and actuator dynamics lead to bandwidth limitations. While classical control methods provide tools to synthesize controllers that are robust to a class of model errors, such a notion is missing in modern trajectory optimization, which is solved in the time domain. We propose frequency-shaped cost functions to achieve robust solutions in the context of optimal control for legged robots. Through simulation and hardware experiments we show that motion plans can be made compatible with bandwidth limits set by actuators and contact dynamics. The smoothness of the model predictive solutions can be continuously tuned without compromising the feasibility of the problem. Experiments with the quadrupedal robot ANYmal, which is driven by highly-compliant series elastic actuators, showed significantly improved tracking performance of the planned motion, torque, and force trajectories and enabled the machine to walk robustly on terrain with unmodeled compliance
    • …
    corecore