15 research outputs found

    Metabolites changes of a low-temperature and low-salt fermented Chinese kohlrabi during fermentation based on non-targeted metabolomic analysis

    Get PDF
    A low-temperature and low-salt industrially fermented Chinese kohlrabi (LSCK) was developed in this study, with the salt usage decreased by approximately 70% compared to the traditional high-salt fermented Chinese kohlrabi (HSCK). The differences in physicochemical properties, metabolites and overall flavors during LSCK fermented for 0, 45 and 90 days (d) were analyzed by gas chromatography-time-of-flight mass spectrometry (GC-TOF-MS), electronic nose (E-nose) and other techniques. The results showed that the total acid content increased significantly from 3.68 to 8.59 g/kg. However, the protein content significantly decreased from 2.52/100 to 0.66 g/100 g. The number of lactic acid bacteria cells increased significantly from 3.69 to 4.46 log10CFU/g. Based on multivariate statistical analysis, 21, 14, and 15 differential metabolites were identified in the three treatment groups A1 (0 and 45 days), A2 (45 and 90 days), and A3 (0 and 90 days) respectively (VIP > 1, p < 0.05, |log2FC| ≥ 1.1). Carbohydrates, sugar alcohols, amino acids and their derivatives were the main differential metabolites in the LSCKs fermented for different periods. Aminoacyl−tRNA biosynthesis and glycine, serine and threonine metabolism pathways significantly correlated with the differential metabolites based on Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis (p < 0.05). Furthermore, the overall odors were significantly different among the LSCKs with different fermentation periods, as detected by E-nose. The present study describes the change trend of metabolites during LSCK fermentation and elucidates important metabolic pathways in LSCK, providing a theoretical basis for the target regulation of functional metabolites in kohlrabi and the optimization of LSCK processing

    Harmonic-seeded remote laser emissions in N2-Ar, N2-Xe and N2-Ne mixtures: a comparative study

    Full text link
    We report on the investigation on harmonic-seeded remote laser emissions at 391 nm wavelength from strong-field ionized nitrogen molecules in three different gas mixtures, i.e., N2-Ar, N2-Xe and N2-Ne. We observed a decrease in the remote laser intensity in the N2-Xe mixture because of the decreased clamped intensity in the filament; whereas in the N2-Ne mixture, the remote laser intensity slightly increases because of the increased clamped intensity within the filament. Remarkably, although the clamped intensity in the filament remains nearly unchanged in the N2-Ar mixture because of the similar ionization potentials of N2 and Ar, a significant enhancement of the lasing emission is realized in the N2-Ar mixture. The enhancement is attributed to the stronger third harmonic seed, and longer gain medium due to the extended filament.Comment: 10 pages, 5 figure

    Genomic data for 78 chickens from 14 populations

    Get PDF
    Background: Since the domestication of the red jungle fowls (Gallus gallus; dating back to~10 000 B.P.) in Asia, domestic chickens (Gallus gallus domesticus) have been subjected to the combined effects of natural selection and human-driven artificial selection; this has resulted in marked phenotypic diversity in a number of traits, including behavior, body composition, egg production, and skin color. Population genomic variations through diversifying selection have not been fully investigated. Findings: The whole genomes of 78 domestic chickens were sequenced to an average of 18-fold coverage for each bird. By combining this data with publicly available genomes of five wild red jungle fowls and eight Xishuangbanna game fowls, we conducted a comprehensive comparative genomics analysis of 91 chickens from 17 populations. After aligning ~21.30 gigabases (Gb) of high-quality data from each individual to the reference chicken genome, we identified ~6.44 million (M) single nucleotide polymorphisms (SNPs) for each population. These SNPs included 1.10 M novel SNPs in 17 populations that were absent in the current chicken dbSNP (Build 145) entries. Conclusions: The current data is important for population genetics and further studies in chickens and will serve as a valuable resource for investigating diversifying selection and candidate genes for selective breeding in chickens.Peer reviewedAnimal Scienc

    Effects of Low-Temperature and Low-Salt Fermentation on the Physicochemical Properties and Volatile Flavor Substances of Chinese Kohlrabi Using Gas Chromatography–Ion Mobility Spectrometry

    No full text
    To explore the effect of low-temperature and low-salt fermentation on the volatile flavor substances of Chinese kohlrabi, low-temperature and low-salt fermented Chinese kohlrabi (LSCK) and traditional high-salt fermented Chinese kohlrabi (HSCK) were produced. The physicochemical and texture properties of the two kinds of Chinese kohlrabies were evaluated. Headspace gas chromatography-ion mobility spectrometry (GC-IMS) and electronic nose (E-nose) were used to analyze the volatile flavor substances of the kohlrabi. The results showed that the total acid content significantly decreased (p p p 1, including tetrahydrothiophene, ethyl 3-(methylthio)propanoate, 3-methylbutyric acid, hexanenitrile, and 3-methyl-3-buten-1-ol, could be used as potential biomarkers for identifying LSCK and HSCK. The E-nose analysis further demonstrated that there was a significant difference in overall flavor between the LSCK and HSCK. The present study provides support for the development of green processing technology and new low-salt Chinese kohlrabi products

    The complete mitogenome of the splendid japalure Japalura splendida (Squamata, Agamidae)

    No full text
    The complete mitogenome of Japalura splendida (16,673 bp in length) is determined and analyzed in this study. It contains 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes, and one non-coding regions. All the genes in J. splendida are distributed on the H-strand, except for the ND6 gene and seven tRNA genes which are encoded on the L-strand. The phylogenetic tree suggests that J. splendida and Japalura flaviceps formed a sister group and reveals the order ((((Acanthosaura lepidogaster, Acanthosaura armata), ((J. splendida, J. flaviceps), Pseudocalotes microlepis))), Calotes versicolor) with substantial support for the monophyly

    The complete mitogenome of the granular torrent frog, Amolops granulosus (Anura: Ranidae)

    No full text
    We obtained the complete mitochondrial genome of Amolops granulosus, which was 17,785 bp in length and it contained the 37 typical mitochondrial genes: 2 ribosomal RNAs, 22 transfer RNAs (tRNAs), 13 protein-coding genes (PCGs), and 1 control region (CR). The hotspot of gene arrangement was ranged as ‘W-gap-OL-gap-A-N-gap-C-Y’ which consisted with most published Amolops mitogenomes. Our phylogenetic results suggested the gene arrangement of ‘WANCY’ region can facilitate to distinguish the Amolops species as an efficient genetic marker

    Complete mitochondrial genome of the webbed-toed gecko Gekko subpalmatus (Squamata: Gekkonidae)

    No full text
    Here, we report the first complete mitochondrial genome of Gekko subpalmatus. The genome of Gekko subpalmatus is 17,105 bp in length and consists of 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes, and 1 control region. The phylogenetic tree reveals that G. subpalmatus is a sister group to G. hokouensis and shows (((((G. subpalmatus, G. hokouensis), G. swinhonis), G. japonicus), G. chinensis), G. gecko) with strong support. This study provides more molecular data for G. subpalmatus and lays the foundation for future protection

    The complete mitochondrial genome of the tree frog, Polypedates braueri (Anura, Rhacophoridae)

    No full text
    We determined the complete mitochondrial genome of the tree frog, Polypedates braueri using next generation sequencing (NGS) and Sanger sequencing. The mitogenome of P. braueri was 19,904 bp in length, which contained 12 protein-coding genes, 22 tRNAs, two rRNAs, and two control regions (D-Loop). A noncoding sequence (NC) was discovered between tRNALys and ATP6 gene, as well as replaced the original position of ATP8 gene. The ND5 gene was found between the two control regions. More mitochondrial genomic information will contribute to revealing the phylogenetic relationships among species of the genus Polypedates

    The Complete Mitochondrial Genome of Platysternon megacephalum peguense and Molecular Phylogenetic Analysis

    No full text
    Platysternon megacephalum is the only living representative species of Platysternidae and only three subspecies remain: P. m. megalorcephalum, P. m. shiui, and P. m. peguense. However, previous reports implied that P. m. peguense has distinct morphological and molecular features. The characterization of the mitogenome has been accepted as an efficient means of phylogenetic and evolutionary analysis. Hence, this study first determined the complete mitogenome of P. m. peguense with the aim to identify the structure and variability of the P. m. peguense mitogenome through comparative analysis. Furthermore, the phylogenetic relationship of the three subspecies was tested. Based on different tRNA gene loss and degeneration of these three subspecies, their rearrangement pathways have been inferred. Phylogenetic analysis showed that P. m. peguense is a sister group to (P. m. megalorcephalum and P. m. shiui). Furthermore, the divergence time estimation of these three subspecies coincided with the uplift of the Tibetan Plateau. This study shows that the genetic distances between P. m. peguense and the other two subspecies are comparable to interspecific genetic distances, for example within Mauremys. In general, this study provides new and meaningful insights into the evolution of the three Platysternidae subspecies