367 research outputs found

    Predicted reentrant melting of dense hydrogen at ultra-high pressures

    Full text link
    The phase diagram of hydrogen is one of the most important challenges in high-pressure physics and astrophysics. Especially, the melting of dense hydrogen is complicated by dimer dissociation, metallization and nuclear quantum effect of protons, which together lead to a cold melting of dense hydrogen when above 500 GPa. Nonetheless, the variation of the melting curve at higher pressures is virtually uncharted. Here we report that using ab initio molecular dynamics and path integral simulations based on density functional theory, a new atomic phase is discovered, which gives an uplifting melting curve of dense hydrogen when beyond 2 TPa, and results in a reentrant solid-liquid transition before entering the Wigner crystalline phase of protons. The findings greatly extend the phase diagram of dense hydrogen, and put metallic hydrogen into the group of alkali metals, with its melting curve closely resembling those of lithium and sodium.Comment: 27 pages, 10 figure

    Anomalies in non-stoichiometric uranium dioxide induced by pseudo-phase transition of point defects

    Full text link
    A uniform distribution of point defects in an otherwise perfect crystallographic structure usually describes a unique pseudo phase of that state of a non-stoichiometric material. With off-stoichiometric uranium dioxide as a prototype, we show that analogous to a conventional phase transition, these pseudo phases also will transform from one state into another via changing the predominant defect species when external conditions of pressure, temperature, or chemical composition are varied. This exotic transition is numerically observed along shock Hugoniots and isothermal compression curves in UO2 with first-principles calculations. At low temperatures, it leads to anomalies (or quasi-discontinuities) in thermodynamic properties and electronic structures. In particular, the anomaly is pronounced in both shock temperature and the specific heat at constant pressure. With increasing of the temperature, however, it transforms gradually to a smooth cross-over, and becomes less discernible. The underlying physical mechanism and characteristics of this type of transition are encoded in the Gibbs free energy, and are elucidated clearly by analyzing the correlation with the variation of defect populations as a function of pressure and temperature. The opportunities and challenges for a possible experimental observation of this phase change are also discussed.Comment: 11 pages, 5 figure
    • …
    corecore