192 research outputs found

    A Review: Peanut Fatty Acids Determination Using Hyper Spectroscopy Imaging and Its Significance on Food Quality and Safety

    Get PDF
    This paper is a review of determination of peanut fatty acids by using Hyper Spectral Imaging (HSI) methods as a non-destructive food quality and safety monitoring. The key spectral areas are the visual and near-infrared wavelengths. Few have been published on determination of peanut fatty acids by using HSI as an efficient and effective method for evaluating the quality and safety of oil. Providentially, the use of HSI has been observed to have positive effects on determination of food quality and safety (Smith B. 2012). It has gained a wide recognition as a non-destructive, fast, quality and safety analysis, and assessment method for a wide range of food products.  Literature shows that, HSI is not commonly and widely used therefore this paper aspires to emphasize the use of HSI on improving the quality and safety of peanut oil and its products based on the determination of peanut fatty acids. The authors predicted that even in its current imperfect on the affordability, maintenance and complexity on finding solutions or model approaches to their food quality problems from optics, imaging, and spectroscopy, yet HSI is the best method than other current existing methods, and can give an idea of how to better meet market and consumer needs on high food quality and safety for their better healthy. Key words: Hyper spectral imaging, Peanut (Arachis hypogaea), oil, Oleic and linoleic fatty acid, Food quality, food safety

    DeepDPM: Dynamic Population Mapping via Deep Neural Network

    Full text link
    Dynamic high resolution data on human population distribution is of great importance for a wide spectrum of activities and real-life applications, but is too difficult and expensive to obtain directly. Therefore, generating fine-scaled population distributions from coarse population data is of great significance. However, there are three major challenges: 1) the complexity in spatial relations between high and low resolution population; 2) the dependence of population distributions on other external information; 3) the difficulty in retrieving temporal distribution patterns. In this paper, we first propose the idea to generate dynamic population distributions in full-time series, then we design dynamic population mapping via deep neural network(DeepDPM), a model that describes both spatial and temporal patterns using coarse data and point of interest information. In DeepDPM, we utilize super-resolution convolutional neural network(SRCNN) based model to directly map coarse data into higher resolution data, and a time-embedded long short-term memory model to effectively capture the periodicity nature to smooth the finer-scaled results from the previous static SRCNN model. We perform extensive experiments on a real-life mobile dataset collected from Shanghai. Our results demonstrate that DeepDPM outperforms previous state-of-the-art methods and a suite of frequent data-mining approaches. Moreover, DeepDPM breaks through the limitation from previous works in time dimension so that dynamic predictions in all-day time slots can be obtained.Comment: AAAI201

    Japanese Legal Scholars and Political Reformation During the Late Qing Dynasty

    Get PDF
    In this essay, I have examined the Sino-Japanese relations during the ten years immediately preceding the Qinhai Revolution from three closely related perspectives. The first is the frequency with which the elite of the two countries travelled to each country. The second is the translation of editorials written by the Japanese elite on the Qing reformations that were published in each of the Chinese newspapers. The third is that many of the exchange students in Japan returned to China where they played important roles in the social reformation occurring at the end of the Qing Dynasty. I have also closely examined the influence of the Japanese legal scholars on the Qing political reformations as they were extremely important figures in the cultural exchange between the two countries and furthered the transformation of modern Chinese thought and systems

    BOURNE: Bootstrapped Self-supervised Learning Framework for Unified Graph Anomaly Detection

    Full text link
    Graph anomaly detection (GAD) has gained increasing attention in recent years due to its critical application in a wide range of domains, such as social networks, financial risk management, and traffic analysis. Existing GAD methods can be categorized into node and edge anomaly detection models based on the type of graph objects being detected. However, these methods typically treat node and edge anomalies as separate tasks, overlooking their associations and frequent co-occurrences in real-world graphs. As a result, they fail to leverage the complementary information provided by node and edge anomalies for mutual detection. Additionally, state-of-the-art GAD methods, such as CoLA and SL-GAD, heavily rely on negative pair sampling in contrastive learning, which incurs high computational costs, hindering their scalability to large graphs. To address these limitations, we propose a novel unified graph anomaly detection framework based on bootstrapped self-supervised learning (named BOURNE). We extract a subgraph (graph view) centered on each target node as node context and transform it into a dual hypergraph (hypergraph view) as edge context. These views are encoded using graph and hypergraph neural networks to capture the representations of nodes, edges, and their associated contexts. By swapping the context embeddings between nodes and edges and measuring the agreement in the embedding space, we enable the mutual detection of node and edge anomalies. Furthermore, we adopt a bootstrapped training strategy that eliminates the need for negative sampling, enabling BOURNE to handle large graphs efficiently. Extensive experiments conducted on six benchmark datasets demonstrate the superior effectiveness and efficiency of BOURNE in detecting both node and edge anomalies

    Model and Data Agreement for Learning with Noisy Labels

    Full text link
    Learning with noisy labels is a vital topic for practical deep learning as models should be robust to noisy open-world datasets in the wild. The state-of-the-art noisy label learning approach JoCoR fails when faced with a large ratio of noisy labels. Moreover, selecting small-loss samples can also cause error accumulation as once the noisy samples are mistakenly selected as small-loss samples, they are more likely to be selected again. In this paper, we try to deal with error accumulation in noisy label learning from both model and data perspectives. We introduce mean point ensemble to utilize a more robust loss function and more information from unselected samples to reduce error accumulation from the model perspective. Furthermore, as the flip images have the same semantic meaning as the original images, we select small-loss samples according to the loss values of flip images instead of the original ones to reduce error accumulation from the data perspective. Extensive experiments on CIFAR-10, CIFAR-100, and large-scale Clothing1M show that our method outperforms state-of-the-art noisy label learning methods with different levels of label noise. Our method can also be seamlessly combined with other noisy label learning methods to further improve their performance and generalize well to other tasks. The code is available in https://github.com/zyh-uaiaaaa/MDA-noisy-label-learning.Comment: Accepted by AAAI2023 Worksho

    Towards Personalized Privacy: User-Governed Data Contribution for Federated Recommendation

    Full text link
    Federated recommender systems (FedRecs) have gained significant attention for their potential to protect user's privacy by keeping user privacy data locally and only communicating model parameters/gradients to the server. Nevertheless, the currently existing architecture of FedRecs assumes that all users have the same 0-privacy budget, i.e., they do not upload any data to the server, thus overlooking those users who are less concerned about privacy and are willing to upload data to get a better recommendation service. To bridge this gap, this paper explores a user-governed data contribution federated recommendation architecture where users are free to take control of whether they share data and the proportion of data they share to the server. To this end, this paper presents a cloud-device collaborative graph neural network federated recommendation model, named CDCGNNFed. It trains user-centric ego graphs locally, and high-order graphs based on user-shared data in the server in a collaborative manner via contrastive learning. Furthermore, a graph mending strategy is utilized to predict missing links in the graph on the server, thus leveraging the capabilities of graph neural networks over high-order graphs. Extensive experiments were conducted on two public datasets, and the results demonstrate the effectiveness of the proposed method

    Gradient Attention Balance Network: Mitigating Face Recognition Racial Bias via Gradient Attention

    Full text link
    Although face recognition has made impressive progress in recent years, we ignore the racial bias of the recognition system when we pursue a high level of accuracy. Previous work found that for different races, face recognition networks focus on different facial regions, and the sensitive regions of darker-skinned people are much smaller. Based on this discovery, we propose a new de-bias method based on gradient attention, called Gradient Attention Balance Network (GABN). Specifically, we use the gradient attention map (GAM) of the face recognition network to track the sensitive facial regions and make the GAMs of different races tend to be consistent through adversarial learning. This method mitigates the bias by making the network focus on similar facial regions. In addition, we also use masks to erase the Top-N sensitive facial regions, forcing the network to allocate its attention to a larger facial region. This method expands the sensitive region of darker-skinned people and further reduces the gap between GAM of darker-skinned people and GAM of Caucasians. Extensive experiments show that GABN successfully mitigates racial bias in face recognition and learns more balanced performance for people of different races.Comment: Accepted by CVPR 2023 worksho

    On-Device Recommender Systems: A Comprehensive Survey

    Full text link
    Recommender systems have been widely deployed in various real-world applications to help users identify content of interest from massive amounts of information. Traditional recommender systems work by collecting user-item interaction data in a cloud-based data center and training a centralized model to perform the recommendation service. However, such cloud-based recommender systems (CloudRSs) inevitably suffer from excessive resource consumption, response latency, as well as privacy and security risks concerning both data and models. Recently, driven by the advances in storage, communication, and computation capabilities of edge devices, there has been a shift of focus from CloudRSs to on-device recommender systems (DeviceRSs), which leverage the capabilities of edge devices to minimize centralized data storage requirements, reduce the response latency caused by communication overheads, and enhance user privacy and security by localizing data processing and model training. Despite the rapid rise of DeviceRSs, there is a clear absence of timely literature reviews that systematically introduce, categorize and contrast these methods. To bridge this gap, we aim to provide a comprehensive survey of DeviceRSs, covering three main aspects: (1) the deployment and inference of DeviceRSs (2) the training and update of DeviceRSs (3) the security and privacy of DeviceRSs. Furthermore, we provide a fine-grained and systematic taxonomy of the methods involved in each aspect, followed by a discussion regarding challenges and future research directions. This is the first comprehensive survey on DeviceRSs that covers a spectrum of tasks to fit various needs. We believe this survey will help readers effectively grasp the current research status in this field, equip them with relevant technical foundations, and stimulate new research ideas for developing DeviceRSs

    Single Cells Are Spatial Tokens: Transformers for Spatial Transcriptomic Data Imputation

    Full text link
    Spatially resolved transcriptomics brings exciting breakthroughs to single-cell analysis by providing physical locations along with gene expression. However, as a cost of the extremely high spatial resolution, the cellular level spatial transcriptomic data suffer significantly from missing values. While a standard solution is to perform imputation on the missing values, most existing methods either overlook spatial information or only incorporate localized spatial context without the ability to capture long-range spatial information. Using multi-head self-attention mechanisms and positional encoding, transformer models can readily grasp the relationship between tokens and encode location information. In this paper, by treating single cells as spatial tokens, we study how to leverage transformers to facilitate spatial tanscriptomics imputation. In particular, investigate the following two key questions: (1) how to encode spatial information of cells in transformers\textit{how to encode spatial information of cells in transformers}, and (2)  how to train a transformer for transcriptomic imputation\textit{ how to train a transformer for transcriptomic imputation}. By answering these two questions, we present a transformer-based imputation framework, SpaFormer, for cellular-level spatial transcriptomic data. Extensive experiments demonstrate that SpaFormer outperforms existing state-of-the-art imputation algorithms on three large-scale datasets while maintaining superior computational efficiency
    corecore