271 research outputs found

    Traditional transfusion practices are changing

    Get PDF
    Schochl and co-authors have described a 5-year retrospective study that outlines a novel, important and controversial transfusion concept in seriously injured trauma patients. Traditionally, clinicians have been taught to use a serial approach, resuscitating hypovolemic trauma patients with a form of crystalloid or colloid, followed by red blood cells (RBCs), then fresh frozen plasma (FFP), and lastly platelets. The data supporting this widely accepted approach are remarkably weak. Conversely, Schochl and colleagues, in an innovative, retrospective study, describe the use of fibrinogen concentrate, plasma complex concentrate, RBCs, FFP, and platelets driven by a thromboelastometry-based algorithm. Finally, it appears that transfusion therapy is becoming driven by physiology


    Get PDF
    Expenditure patterns were examined for food partitioned into food at home and away from home to test the veracity of Engel's law. The analysis employed several functional forms and a Heckman two-step methodology to account for censored-response bias. Engel's law was verified in every case.Consumer/Household Economics,

    X-Ray Diffraction Powder Data for Steroids: Supplement VIII

    Get PDF
    This supplement continues a series of publications which began as a separate section, with the Dec. 1958 issue, and has been supplemented periodically since then. Other publications have been March 1961 (Supplement I) Sept. 1962 (Supp. II): March 1963 (Supp. Ill): March 1964 (Supp. IV): Dec. 1964 (Supp. V): Sept. 1965 (Supp. VI) and Dec. 1966 (Supp. VII)

    Seismic Monitoring and Baseline Microseismicity in the Rome Trough, Eastern Kentucky

    Get PDF
    In the central and eastern United States, felt earthquakes likely triggered by fluid injection from oil and gas production or wastewater disposal have dramatically increased in frequency since the onset of the unconventional shale gas and oil boom. In the Rome Trough of eastern Kentucky, fracture stimulations and wastewater injection are ongoing and occur near areas of historical seismic activity. Unlike in surrounding and nearby states (Ohio, West Virginia, and Arkansas), in Kentucky, no seismic events related to subsurface fluid injections have been reported as felt or detected by regional seismic networks, including the Kentucky Seismic and Strong-Motion Network. Oil and gas development of the deep Cambrian Rogersville Shale in the Rome Trough is in a very early stage, and will require horizontal drilling and high-volume hydraulic fracturing. To characterize natural seismicity rates and the conditions that might lead to induced or triggered events, the Kentucky Geological Survey is conducting a collaborative study, the Eastern Kentucky Microseismic Monitoring Project, prior to large-scale oil and gas production and wastewater injection. A temporary network of broadband seismographs was deployed near dense clusters of Class II wastewater-injection wells and near the locations of new, deep oil and gas test wells in eastern Kentucky. Network installation began in mid-2015 and by November 2015, 12 stations were operating, with data acquired in real time and jointly with regional network data. Additional stations were installed between June 2016 and October 2017 in targeted locations. The network improved the monitoring sensitivity near wastewater-injection wells and deep oil and gas test wells by approximately an entire unit of magnitude: With the temporary network, the detectable magnitudes range from 0.7 to 1.0, and without it, the detectable magnitudes range from 1.5 to 1.9. Using the real-time recordings of this network in tandem with the recordings of other temporary and permanent regional seismic stations, we generated a catalog of local seismicity and developed a calibrated magnitude scale. At the time this report was prepared, 151 earthquakes had been detected and located, 38 of which were in the project area, defined as the region bounded by 37.1°N to 38.7°N latitude and 84.5°W to 82.0°W longitude. Only six earthquakes occurred in the Rome Trough of eastern Kentucky, none of which were reported in regional monitoring agency catalogs, and none of which appear to be associated with the deep Rogersville Shale test wells that were completed during the time the network was in operation or with wastewater-injection wells

    Assessing protocol adherence in a clinical trial with ordered treatment regimens: Quantifying the pragmatic, randomized optimal platelet and plasma ratios (PROPPR) trial experience

    Get PDF
    AbstractBackgroundMedication dispensing errors are common in clinical trials, and have a significant impact on the quality and validity of a trial. Therefore, the definition, calculation and evaluation of such errors are important for supporting a trial’s conclusions. A variety of medication dispensing errors can occur. In this paper, we focus on errors in trials where the intervention includes multiple therapies that must be given in a pre-specified order that varies across treatment arms and varies in duration.MethodsThe Pragmatic, Randomized Optimal Platelet and Plasma Ratios (PROPPR) trial was a Phase III multi-site, randomized trial to compare the effectiveness and safety of 1:1:1 transfusion ratios of plasma and platelets to red blood cells with a 1:1:2 ratio. In this trial, these three types of blood products were to be transfused in a pre-defined order that differed by treatment arm. In this paper, we present approaches from the PROPPR trial that we used to define and calculate the occurrence of out of order blood transfusion errors. We applied the proposed method to calculate protocol adherence to the specified order of transfusion in each treatment arm.ResultsUsing our proposed method, protocol adherence was greater in the 1:1:1 group than in the 1:1:2 group (96% vs 93%) (p<0.0001), although out of order transfusion errors in both groups were low. Final transfusion ratios of plasma to platelets to red blood cells for the 1:1:1 ratio group was 0.93:1.32:1, while the transfusion ratio for the 1:1:2 ratio group was 0.48:0.48:1.ConclusionsOverall, PROPPR adherence to blood transfusion order pre-specified in the protocol was high, and the required order of transfusions for the 1:1:2 group was more difficult to achieve. The approaches proposed in this manuscript were useful in evaluating the PROPPR adherence and are potentially useful for other trials where a specific treatment orders with varying durations must be maintained
    • …