12,911 research outputs found
Solid state photomultiplier for astronomy, phase 2
Epitaxial layers with varying donor concentration profiles were grown on silicon substrate wafers using chemical vapor deposition (CVD) techniques, and solid state photomultiplier (SSPM) devices were fabricated from the wafers. Representative detectors were tested in a low background photon flux, low temperature environment to determine the device characteristics for comparison to NASA goals for astronomical applications. The SSPM temperatures varied between 6 and 11 K with background fluxes in the range from less than 5 x 10 to the 6th power to 10 to the 13th power photons/square cm per second at wavelengths of 3.2 and 20 cm. Measured parameters included quantum efficiency, dark count rate and bias current. Temperature for optimal performance is 10 K, the highest ever obtained for SSPMs. The devices exhibit a combination of the lowest dark current and highest quantum efficiency yet achieved. Experimental data were reduced, analyzed and used to generate recommendations for future studies. The background and present status of the microscopic theory of SSPM operation were reviewed and summarized. Present emphasis is on modeling of the avalanche process which is the basis for SSPM operation. Approaches to the solution of the Boltzmann transport equation are described and the treatment of electron scattering mechanisms is presented. The microscopic single-electron transport theory is ready to be implemented for large-scale computations
Vitrification and determination of the crystallization time scales of the bulk-metallic-glass-forming liquid Zr58.5Nb2.8Cu15.6Ni12.8Al10.3
The crystallization kinetics of Zr58.5Nb2.8Cu15.6Ni12.8Al10.3 were studied in an electrostatic levitation (ESL) apparatus. The measured critical cooling rate is 1.75 K/s. Zr58.5Nb2.8Cu15.6Ni12.8Al10.3 is the first bulk-metallic-glass-forming liquid that does not contain beryllium to be vitrified by purely radiative cooling in the ESL. Furthermore, the sluggish crystallization kinetics enable the determination of the time-temperature-transformation (TTT) diagram between the liquidus and the glass transition temperatures. The shortest time to reach crystallization in an isothermal experiment; i.e., the nose of the TTT diagram is 32 s. The nose of the TTT diagram is at 900 K and positioned about 200 K below the liquidus temperature
Direct microwave measurement of Andreev-bound-state dynamics in a proximitized semiconducting nanowire
The modern understanding of the Josephson effect in mesosopic devices derives
from the physics of Andreev bound states, fermionic modes that are localized in
a superconducting weak link. Recently, Josephson junctions constructed using
semiconducting nanowires have led to the realization of superconducting qubits
with gate-tunable Josephson energies. We have used a microwave circuit QED
architecture to detect Andreev bound states in such a gate-tunable junction
based on an aluminum-proximitized InAs nanowire. We demonstrate coherent
manipulation of these bound states, and track the bound-state fermion parity in
real time. Individual parity-switching events due to non-equilibrium
quasiparticles are observed with a characteristic timescale . The of a topological nanowire
junction sets a lower bound on the bandwidth required for control of Majorana
bound states
A Monte Carlo Approach to Modeling the Breakup of the Space Launch System EM-1 Core Stage with an Integrated Blast and Fragment Catalogue
The Liquid Propellant Fragment Overpressure Acceleration Model (L-FOAM) is a tool developed by Bangham Engineering Incorporated (BEi) that produces a representative debris cloud from an exploding liquid-propellant launch vehicle. Here it is applied to the Core Stage (CS) of the National Aeronautics and Space Administration (NASA) Space Launch System (SLS launch vehicle). A combination of Probability Density Functions (PDF) based on empirical data from rocket accidents and applicable tests, as well as SLS specific geometry are combined in a MATLAB script to create unique fragment catalogues each time L-FOAM is run-tailored for a Monte Carlo approach for risk analysis. By accelerating the debris catalogue with the BEi blast model for liquid hydrogen / liquid oxygen explosions, the result is a fully integrated code that models the destruction of the CS at a given point in its trajectory and generates hundreds of individual fragment catalogues with initial imparted velocities. The BEi blast model provides the blast size (radius) and strength (overpressure) as probabilities based on empirical data and anchored with analytical work. The coupling of the L-FOAM catalogue with the BEi blast model is validated with a simulation of the Project PYRO S-IV destruct test. When running a Monte Carlo simulation, L-FOAM can accelerate all catalogues with the same blast (mean blast, 2 blast, etc.), or vary the blast size and strength based on their respective probabilities. L-FOAM then propagates these fragments until impact with the earth. Results from L-FOAM include a description of each fragment (dimensions, weight, ballistic coefficient, type and initial location on the rocket), imparted velocity from the blast, and impact data depending on user desired application. LFOAM application is for both near-field (fragment impact to escaping crew capsule) and far-field (fragment ground impact footprint) safety considerations. The user is thus able to use statistics from a Monte Carlo set of L-FOAM catalogues to quantify risk for a multitude of potential CS destruct scenarios. Examples include the effect of warning time on the survivability of an escaping crew capsule or the maximum fragment velocities generated by the ignition of leaking propellants in internal cavities
Solid Rocket Launch Vehicle Explosion Environments
Empirical explosion data from full scale solid rocket launch vehicle accidents and tests were collected from all available literature from the 1950s to the present. In general data included peak blast overpressure, blast impulse, fragment size, fragment speed, and fragment dispersion. Most propellants were 1.1 explosives but a few were 1.3. Oftentimes the data from a single accident was disjointed and/or missing key aspects. Despite this fact, once the data as a whole was digitized, categorized, and plotted clear trends appeared. Particular emphasis was placed on tests or accidents that would be applicable to scenarios from which a crew might need to escape. Therefore, such tests where a large quantity of high explosive was used to initiate the solid rocket explosion were differentiated. Also, high speed ground impacts or tests used to simulate such were also culled. It was found that the explosions from all accidents and applicable tests could be described using only the pressurized gas energy stored in the chamber at the time of failure. Additionally, fragmentation trends were produced. Only one accident mentioned the elusive "small" propellant fragments, but upon further analysis it was found that these were most likely produced as secondary fragments when larger primary fragments impacted the ground. Finally, a brief discussion of how this data is used in a new launch vehicle explosion model for improving crew/payload survival is presented
The Influence of PCl 3 on Planarisation and Selectivity of InP Regrowth by Atmospheric Pressure MOVPE
The introduction of phosphorus trichloride into the AP-MOVPE growth of InP has been found to dramatically improve the regrowth adjacent to mesa structures. By suppressing growth in the [100] direction and enhancing growth in the [311] directions planar regrowth is achieved. Polycrystalline deposits on dielectric masks can also be completely suppresse
Integrated digital/electric aircraft concepts study
The integrated digital/electrical aircraft (IDEA) is an aircraft concept which employs all electric secondary power systems and advanced digital flight control systems. After trade analysis, preferred systems were applied to the baseline configuration. An additional configuration, the alternate IDEA, was also considered. For this concept the design ground rules were relaxed in order to quantify additional synergistic benefits. It was proposed that an IDEA configuration and technical risks associated with the IDEA systems concepts be defined and the research and development required activities to reduce these risks be identified. The selected subsystems include: power generation, power distribution, actuators, environmental control system and flight controls systems. When the aircraft was resized, block fuel was predicted to decrease by 11.3 percent, with 7.9 percent decrease in direct operating cost. The alternate IDEA shows a further 3.4 percent reduction in block fuel and 3.1 percent reduction in direct operating cost
Recommended from our members
Developing Children's Oral Health Assessment Toolkits Using Machine Learning Algorithm.
ObjectivesEvaluating children's oral health status and treatment needs is challenging. We aim to build oral health assessment toolkits to predict Children's Oral Health Status Index (COHSI) score and referral for treatment needs (RFTN) of oral health. Parent and Child toolkits consist of short-form survey items (12 for children and 8 for parents) with and without children's demographic information (7 questions) to predict the child's oral health status and need for treatment.MethodsData were collected from 12 dental practices in Los Angeles County from 2015 to 2016. We predicted COHSI score and RFTN using random Bootstrap samples with manually introduced Gaussian noise together with machine learning algorithms, such as Extreme Gradient Boosting and Naive Bayesian algorithms (using R). The toolkits predicted the probability of treatment needs and the COHSI score with percentile (ranking). The performance of the toolkits was evaluated internally and externally by residual mean square error (RMSE), correlation, sensitivity and specificity.ResultsThe toolkits were developed based on survey responses from 545 families with children aged 2 to 17 y. The sensitivity and specificity for predicting RFTN were 93% and 49% respectively with the external data. The correlation(s) between predicted and clinically determined COHSI was 0.88 (and 0.91 for its percentile). The RMSEs of the COHSI toolkit were 4.2 for COHSI (and 1.3 for its percentile).ConclusionsSurvey responses from children and their parents/guardians are predictive for clinical outcomes. The toolkits can be used by oral health programs at baseline among school populations. The toolkits can also be used to quantify differences between pre- and post-dental care program implementation. The toolkits' predicted oral health scores can be used to stratify samples in oral health research.Knowledge transfer statementThis study creates the oral health toolkits that combine self- and proxy- reported short forms with children's demographic characteristics to predict children's oral health and treatment needs using Machine Learning algorithms. The toolkits can be used by oral health programs at baseline among school populations to quantify differences between pre and post dental care program implementation. The toolkits can also be used to stratify samples according to the treatment needs and oral health status
- …