2,222 research outputs found

    Performance evaluation of the Boron Coated Straws detector with Geant4

    Get PDF
    The last decade has witnessed the development of several alternative neutron detector technologies, as a consequence of upcoming neutron sources and upgrades, as well the world-wide shortage of 3^3He. One branch of development is the family of 10^{10}B-based gaseous detectors. This work focuses on the boron coated straws (BCS) by Proportional Technologies Inc., a commercial solution designed for use in homeland security and neutron science. A detailed Geant4 simulation study of the BCS is presented, which investigates various aspects of the detector performance, e.g. efficiency, activation, absorption and the impact of scattering on the measured signal. The suitability of the BCS detector for Small Angle Neutron Scattering (SANS), direct chopper spectrometry and imaging is discussed.Comment: 50 pages, 37 figures, minor changes after review, results unchange

    Suppression of intrinsic neutron background in the Multi-Grid detector

    Full text link
    One of the key requirements for neutron scattering instruments is the Signal-to-Background ratio (SBR). This is as well a design driving requirement for many instruments at the European Spallation Source (ESS), which aspires to be the brightest neutron source of the world. The SBR can be effectively improved with background reduction. The Multi-Grid, a large-area thermal neutron detector with a solid boron carbide converter, is a novel solution for chopper spectrometers. This detector will be installed for the three prospective chopper spectrometers at the ESS. As the Multi-Grid detector is a large area detector with a complex structure, its intrinsic background and its suppression via advanced shielding design should be investigated in its complexity, as it cannot be naively calculated. The intrinsic scattered neutron background and its effect on the SBR is determined via a detailed Monte Carlo simulation for the Multi-Grid detector module, designed for the CSPEC instrument at the ESS. The impact of the detector vessel and the neutron entrance window on scattering is determined, revealing the importance of an optimised internal detector shielding. The background-reducing capacity of common shielding geometries, like side-shielding and end-shielding is determined by using perfect absorber as shielding material, and common shielding materials, like B4_{4}C and Cd are also tested. On the basis of the comparison of the effectiveness of the different shielding topologies and materials, recommendations are given for a combined shielding of the Multi-Grid detector module, optimised for increased SBR.Comment: 26 pages, 18 figures, revise

    Recommended Locations of Beam Loss Monitors for the ATLAS Roman Pots

    Get PDF
    This note suggests suitable locations to position beam loss monitors to observe losses on the ATLAS Roman Pot station located close to 240m from IP1. This monitoring is envisaged to help to avoid quenches of the super- conducting magnets downstream of the roman pots and to avert damage to either the LHC machine elements or the roman pot detectors. The results presented in this note indicate the locations where the BLMs should be installed. The recommended locations are determined using previous simulation results on BLM response to losses; therefore these results should be considered in conjunction with the previous results. A more detailed note on the topic will follow later

    Recommended Locations of Beam Loss Monitors for the TOTEM Roman Pots

    Get PDF
    This note presents results from simulations of losses on the TOTEM Roman Pot stations located close to 150m and 220m from IP5. These results are used to evaluate suitable locations to position beam loss monitors to monitor these losses, and help to avoid quenches of the super-conducting magnets downstream of the roman pots. The results presented in this note indicate the locations where the BLMs should be installed. A more detailed note on the topic will follow later

    Expected Performance of TOTEM BLMS at the LHC

    Get PDF
    The TOTEM experiment at the LHC will operate down to 10 sigma from the beam in the forward region of the CMS experiment. The associated beam loss monitors (BLMs) are crucial to monitor the position of the detectors and to provide a rapid identification of abnormal beam conditions for machine protection purposes. In this paper, the response of the TOTEM BLMs is considered for nominal machine operation and the protection thresholds are defined, withcalculations made of the expected signal fromprotons grazing the TOTEM pot as a function of pot distance from the beam, and the BLM signal from proton collisions at the CMS beam interaction point

    Study of leakage currents in pCVD diamonds as function of the magnetic field

    Full text link
    pCVD diamond sensors are regularly used as beam loss monitors in accelerators by measuring the ionization of the lost particles. In the past these beam loss monitors showed sudden increases in the dark leakage current without beam losses and these erratic leakage currents were found to decrease, if magnetic fields were present. Here we report on a systematic study of leakage currents inside a magnetic field. The decrease of erratic currents in a magnetic field was confirmed. On the contrary, diamonds without erratic currents showed an increase of the leakage current in a magnetic field perpendicular to the electric field for fields up to 0.6T, for higher fields it decreases. A preliminary model is introduced to explain the observations.Comment: 6 pages, 16 figures, poster at Hasselt Diamond Workshop, Mar 2009, accepted version for publicatio

    A 10B-based neutron detector with stacked Multiwire Proportional Counters and macrostructured cathodes

    Full text link
    We present the results of the measurements of the detection efficiency for a 4.7 \r{A} neutron beam incident upon a detector incorporating a stack of up to five MultiWire Proportional Counters (MWPC) with Boron-coated cathodes. The cathodes were made of Aluminum and had a surface exhibiting millimeter-deep V-shaped grooves of 45{\deg}, upon which the thin Boron film was deposited by DC magnetron sputtering. The incident neutrons interacting with the converter layer deposited on the sidewalls of the grooves have a higher capture probability, owing to the larger effective absorption film thickness. This leads to a higher overall detection efficiency for the grooved cathode when compared to a cathode with a flat surface. Both the experimental results and the predictions of the GEANT4 model suggests that a 5-counter detector stack with coated grooved cathodes has the same efficiency as a 7-counter stack with flat cathodes. The reduction in the number of counters in the stack without altering the detection efficiency will prove highly beneficial for large-area position-sensitive detectors for neutron scattering applications, for which the cost-effective manufacturing of the detector and associated readout electronics is an important objective. The proposed detector concept could be a technological option for one of the new chopper spectrometers and other instruments planned to be built at the future European Spallation Source in Sweden. These results with macrostructured cathodes generally apply not just to MWPCs but to other gaseous detectors as well.Comment: 14 pages, 9 figure

    Charge Transfer Properties Through Graphene Layers in Gas Detectors

    Full text link
    Graphene is a single layer of carbon atoms arranged in a honeycomb lattice with remarkable mechanical, electrical and optical properties. For the first time graphene layers suspended on copper meshes were installed into a gas detector equipped with a gaseous electron multiplier. Measurements of low energy electron and ion transfer through graphene were conducted. In this paper we describe the sample preparation for suspended graphene layers, the testing procedures and we discuss the preliminary results followed by a prospect of further applications.Comment: 2014 IEEE Nuclear Science Symposium and Medical Imaging Conference with the 21st Symposium on Room-Temperature Semiconductor X-Ray and Gamma-Ray Detectors, 4 pages, 8 figure

    Effects of High Charge Densities in Multi-GEM Detectors

    Full text link
    A comprehensive study, supported by systematic measurements and numerical computations, of the intrinsic limits of multi-GEM detectors when exposed to very high particle fluxes or operated at very large gains is presented. The observed variations of the gain, of the ion back-flow, and of the pulse height spectra are explained in terms of the effects of the spatial distribution of positive ions and their movement throughout the amplification structure. The intrinsic dynamic character of the processes involved imposes the use of a non-standard simulation tool for the interpretation of the measurements. Computations done with a Finite Element Analysis software reproduce the observed behaviour of the detector. The impact of this detailed description of the detector in extreme conditions is multiple: it clarifies some detector behaviours already observed, it helps in defining intrinsic limits of the GEM technology, and it suggests ways to extend them.Comment: 5 pages, 6 figures, 2015 IEEE Nuclear Science Symposiu

    A First Comparison of the responses of a He4-based fast-neutron detector and a NE-213 liquid-scintillator reference detector

    Get PDF
    A first comparison has been made between the pulse-shape discrimination characteristics of a novel 4^{4}He-based pressurized scintillation detector and a NE-213 liquid-scintillator reference detector using an Am/Be mixed-field neutron and gamma-ray source and a high-resolution scintillation-pulse digitizer. In particular, the capabilities of the two fast neutron detectors to discriminate between neutrons and gamma-rays were investigated. The NE-213 liquid-scintillator reference cell produced a wide range of scintillation-light yields in response to the gamma-ray field of the source. In stark contrast, due to the size and pressure of the 4^{4}He gas volume, the 4^{4}He-based detector registered a maximum scintillation-light yield of 750~keVee_{ee} to the same gamma-ray field. Pulse-shape discrimination for particles with scintillation-light yields of more than 750~keVee_{ee} was excellent in the case of the 4^{4}He-based detector. Above 750~keVee_{ee} its signal was unambiguously neutron, enabling particle identification based entirely upon the amount of scintillation light produced.Comment: 23 pages, 7 figures, Nuclear Instruments and Methods in Physics Research Section A review addresse
    • …
    corecore