1,557 research outputs found
Autoregulation of RCO by Low-Affinity Binding Modulates Cytokinin Action and Shapes Leaf Diversity
Mechanisms through which the evolution of gene regulation causes morphological diversity are largely unclear. The tremendous shape variation among plant leaves offers attractive opportunities to address this question. In cruciferous plants, the REDUCED COMPLEXITY (RCO) homeodomain protein evolved via gene duplication and acquired a novel expression domain that contributed to leaf shape diversity. However, the molecular pathways through which RCO regulates leaf growth are unknown. A key question is to identify genome-wide transcriptional targets of RCO and the DNA sequences to which RCO binds. We investigate this question using Cardamine hirsuta, which has complex leaves, and its relative Arabidopsis thaliana, which evolved simple leaves through loss of RCO. We demonstrate that RCO directly regulates genes controlling homeostasis of the hormone cytokinin to repress growth at the leaf base. Elevating cytokinin signaling in the RCO expression domain is sufficient to both transform A. thaliana simple leaves into complex ones and partially bypass the requirement for RCO in C. hirsuta complex leaf development. We also identify RCO as its own target gene. RCO directly represses its own transcription via an array of low-affinity binding sites, which evolved after RCO duplicated from its progenitor sequence. This autorepression is required to limit RCO expression. Thus, evolution of low-affinity binding sites created a negative autoregulatory loop that facilitated leaf shape evolution by defining RCO expression and fine-tuning cytokinin activity. In summary, we identify a transcriptional mechanism through which conflicts between novelty and pleiotropy are resolved during evolution and lead to morphological differences between species. Hajheidari et al. identify target genes for the RCO homeodomain protein that drove leaf shape diversity. They show that RCO regulates growth via orchestrating homeostasis for the hormone cytokinin and that it also represses its own transcription via low-affinity binding sites. This autorepression helps delimit RCO expression and shape leaf form
The Physiology and Proteomics of Drought Tolerance in Maize: Early Stomatal Closure as a Cause of Lower Tolerance to Short-Term Dehydration?
Understanding the response of a crop to drought is the first step in the breeding of tolerant genotypes. In our study, two maize (Zea mays L.) genotypes with contrasting sensitivity to dehydration were subjected to moderate drought conditions. The subsequent analysis of their physiological parameters revealed a decreased stomatal conductance accompanied by a slighter decrease in the relative water content in the sensitive genotype. In contrast, the tolerant genotype maintained open stomata and active photosynthesis, even under dehydration conditions. Drought-induced changes in the leaf proteome were analyzed by two independent approaches, 2D gel electrophoresis and iTRAQ analysis, which provided compatible but only partially overlapping results. Drought caused the up-regulation of protective and stress-related proteins (mainly chaperones and dehydrins) in both genotypes. The differences in the levels of various detoxification proteins corresponded well with the observed changes in the activities of antioxidant enzymes. The number and levels of up-regulated protective proteins were generally lower in the sensitive genotype, implying a reduced level of proteosynthesis, which was also indicated by specific changes in the components of the translation machinery. Based on these results, we propose that the hypersensitive early stomatal closure in the sensitive genotype leads to the inhibition of photosynthesis and, subsequently, to a less efficient synthesis of the protective/detoxification proteins that are associated with drought tolerance
The Arabidopsis RNA Polymerase II Carboxyl Terminal Domain (CTD) Phosphatase-Like1 (CPL1) is a biotic stress susceptibility gene
© 2018, The Author(s). Crop breeding for improved disease resistance may be achieved through the manipulation of host susceptibility genes. Previously we identified multiple Arabidopsis mutants known as enhanced stress response1 (esr1) that have defects in a KH-domain RNA-binding protein and conferred increased resistance to the root fungal pathogen Fusarium oxysporum. Here, screening the same mutagenized population we discovered two further enhanced stress response mutants that also conferred enhanced resistance to F. oxysporum. These mutants also have enhanced resistance to a leaf fungal pathogen (Alternaria brassicicola) and an aphid pest (Myzus persicae), but not to the bacterial leaf pathogen Pseudomonas syringae. The causal alleles in these mutants were found to have defects in the ESR1 interacting protein partner RNA Polymerase II Carboxyl Terminal Domain (CTD) Phosphatase-Like1 (CPL1) and subsequently given the allele symbols cpl1-7 and cpl1-8. These results define a new role for CPL1 as a pathogen and pest susceptibility gene. Global transcriptome analysis and oxidative stress assays showed these cpl1 mutants have increased tolerance to oxidative stress. In particular, components of biotic stress responsive pathways were enriched in cpl1 over wild-type up-regulated gene expression datasets including genes related to defence, heat shock proteins and oxidative stress/redox state processes
Metabolite profiling at the cellular and subcellular level reveals metabolites associated with salinity tolerance in sugar beet
Hossain MS, Persicke M, ElSayed AI, Kalinowski J, Dietz K-J. Metabolite profiling at the cellular and subcellular level reveals metabolites associated with salinity tolerance in sugar beet. Journal of Experimental Botany. 2017;68(21-22):5961-5976.Sugar beet is among the most salt-tolerant crops. This study aimed to investigate the metabolic adaptation of sugar beet to salt stress at the cellular and subcellular levels. Seedlings were grown hydroponically and subjected to stepwise increases in salt stress up to 300 mM NaCl. Highly enriched fractions of chloroplasts were obtained by nonaqueous fractionation using organic solvents. Total leaf metabolites and metabolites in chloroplasts were profiled at 3 h and 14 d after reaching the maximum salinity stress of 300 mM NaCl. Metabolite profiling by gas chromatography- mass spectrometry (GC-MS) resulted in the identification of a total of 83 metabolites in leaves and chloroplasts under control and stress conditions. There was a lower abundance of Calvin cycle metabolites under salinity whereas there was a higher abundance of oxidative pentose phosphate cycle metabolites such as 6-phosphogluconate. Accumulation of ribose-5-phosphate and ribulose-5-phosphate coincided with limitation of carbon fixation by ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). Increases in glycolate and serine levels indicated that photorespiratory metabolism was stimulated in salt-stressed sugar beet. Compatible solutes such as proline, mannitol, and putrescine accumulated mostly outside the chloroplasts. Within the chloroplast, putrescine had the highest relative level and probably assisted in the acclimation of sugar beet to high salinity stress. The results provide new information on the contribution of chloroplasts and the extra-chloroplast space to salinity tolerance via metabolic adjustment in sugar beet
Observation of Cabibbo-suppressed two-body hadronic decays and precision mass measurement of the baryon
The first observation of the singly Cabibbo-suppressed
and decays
is reported, using proton-proton collision data at a centre-of-mass energy of
, corresponding to an integrated luminosity of , collected with the LHCb detector between 2016 and 2018. The
branching fraction ratios are measured to be
,
. In addition, using the
decay channel, the baryon
mass is measured to be , improving the
precision of the previous world average by a factor of four.Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2023-011.html (LHCb
public pages
Amplitude analysis of the Λb0→pK−γ decay
The resonant structure of the radiative decay Λb0→pK−γ in the region of proton-kaon invariant-mass up to 2.5 GeV/c2 is studied using proton-proton collision data recorded at centre-of-mass energies of 7, 8, and 13 TeV collected with the LHCb detector, corresponding to a total integrated luminosity of 9 fb−1. Results are given in terms of fit and interference fractions between the different components contributing to this final state. Only Λ resonances decaying to pK− are found to be relevant, where the largest contributions stem from the Λ(1520), Λ(1600), Λ(1800), and Λ(1890) states
Measurement of boson production cross-section in collisions at TeV
The first measurement of the boson production cross-section at
centre-of-mass energy TeV in the forward region is reported,
using collision data collected by the LHCb experiment in year 2017,
corresponding to an integrated luminosity of . The
production cross-section is measured for final-state muons in the
pseudorapidity range . The integrated cross-section is determined to be for the di-muon invariant
mass in the range . This result and the
differential cross-section results are in good agreement with theoretical
predictions at next-to-next-to-leading order in the strong coupling.
Based on a previous LHCb measurement of the boson production
cross-section in Pb collisions at TeV, the nuclear
modification factor is measured for the first time at this
energy. The measured values are in the forward region () and
in the backward region
(), where represents the muon rapidity in
the centre-of-mass frame.Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2023-010.html (LHCb
public pages
Studies of and production in and Pb collisions
The production of and mesons is studied in proton-proton and
proton-lead collisions collected with the LHCb detector. Proton-proton
collisions are studied at center-of-mass energies of and ,
and proton-lead collisions are studied at a center-of-mass energy per nucleon
of . The studies are performed in center-of-mass rapidity
regions (forward rapidity) and
(backward rapidity) defined relative to the proton beam direction. The
and production cross sections are measured differentially as a function
of transverse momentum for and , respectively. The differential cross sections are used to
calculate nuclear modification factors. The nuclear modification factors for
and mesons agree at both forward and backward rapidity, showing
no significant evidence of mass dependence. The differential cross sections of
mesons are also used to calculate cross section ratios,
which show evidence of a deviation from the world average. These studies offer
new constraints on mass-dependent nuclear effects in heavy-ion collisions, as
well as and meson fragmentation.Comment: All figures and tables, along with machine-readable versions and any
supplementary material and additional information, are available at
https://lhcbproject.web.cern.ch/Publications/p/LHCb-PAPER-2023-030.html (LHCb
public pages
- …