2,974 research outputs found

    Spin and energy relaxation in germanium studied by spin-polarized direct-gap photoluminescence

    Full text link
    Spin orientation of photoexcited carriers and their energy relaxation is investigated in bulk Ge by studying spin-polarized recombination across the direct band gap. The control over parameters such as doping and lattice temperature is shown to yield high polarization degree, namely larger than 40%, as well as a fine-tuning of the angular momentum of the emitted light with a complete reversal between right- and left-handed circular polarization. By combining the measurement of the optical polarization state of band-edge luminescence and Monte Carlo simulations of carrier dynamics, we show that these very rich and complex phenomena are the result of the electron thermalization and cooling in the multi-valley conduction band of Ge. The circular polarization of the direct-gap radiative recombination is indeed affected by energy relaxation of hot electrons via the X valleys and the Coulomb interaction with extrinsic carriers. Finally, thermal activation of unpolarized L valley electrons accounts for the luminescence depolarization in the high temperature regime

    Cosmological Properties of a Gauged Axion

    Full text link
    We analyze the most salient cosmological features of axions in extensions of the Standard Model with a gauged anomalous extra U(1) symmetry. The model is built by imposing the constraint of gauge invariance in the anomalous effective action, which is extended with Wess-Zumino counterterms. These generate axion-like interactions of the axions to the gauge fields and a gauged shift symmetry. The scalar sector is assumed to acquire a non-perturbative potential after inflation, at the electroweak phase transition, which induces a mixing of the Stuckelberg field of the model with the scalars of the electroweak sector, and at the QCD phase transition. We discuss the possible mechanisms of sequential misalignments which could affect the axions of these models, and generated, in this case, at both transitions. We compute the contribution of these particles to dark matter, quantifying their relic densities as a function of the Stuckelberg mass. We also show that models with a single anomalous U(1) in general do not account for the dark energy, due to the presence of mixed U(1)-SU(3) anomalies.Comment: 29 pages, 5 figures. Revised version, accepted by Phys. Rev.

    Molecular mechanisms of the acute kidney injury to chronic kidney disease transition: An updated view

    Get PDF
    Increasing evidence has demonstrated the bidirectional link between acute kidney injury (AKI) and chronic kidney disease (CKD) such that, in the clinical setting, the new concept of a unified syndrome has been proposed. The pathophysiological reasons, along with the cellular and molecular mechanisms, behind the ability of a single, acute, apparently self-limiting event to drive chronic kidney disease progression are yet to be explained. This acute injury could promote progression to chronic disease through different pathways involving the endothelium, the inflammatory response and the development of fibrosis. The interplay among endothelial cells, macrophages and other immune cells, pericytes and fibroblasts often converge in the tubular epithelial cells that play a central role. Recent evidence has strengthened this concept by demonstrating that injured tubules respond to acute tubular necrosis through two main mechanisms: The polyploidization of tubular cells and the proliferation of a small population of self-renewing renal progenitors. This alternative pathophysiological interpretation could better characterize functional recovery after AKI

    The Planck-LFI flight model composite waveguides

    Get PDF
    The Low Frequency Instrument on board the PLANCK satellite is designed to give the most accurate map ever of the CMB anisotropy of the whole sky over a broad frequency band spanning 27 to 77 GHz. It is made of an array of 22 pseudo-correlation radiometers, composed of 11 actively cooled (20 K) Front End Modules (FEMs), and 11 Back End Modules (BEMs) at 300K. The connection between the two parts is made with rectangular Wave Guides. Considerations of different nature (thermal, electromagnetic and mechanical), imposed stringent requirements on the WGs characteristics and drove their design. From the thermal point of view, the WG should guarantee good insulation between the FEM and the BEM sections to avoid overloading the cryocooler. On the other hand it is essential that the signals do not undergo excessive attenuation through the WG. Finally, given the different positions of the FEM modules behind the focal surface and the mechanical constraints given by the surrounding structures, different mechanical designs were necessary. A composite configuration of Stainless Steel and Copper was selected to satisfy all the requirements. Given the complex shape and the considerable length (about 1.5-2 m), manufacturing and testing the WGs was a challenge. This work deals with the development of the LFI WGs, including the choice of the final configuration and of the fabrication process. It also describes the testing procedure adopted to fully characterize these components from the electromagnetic point of view and the space qualification process they underwent. Results obtained during the test campaign are reported and compared with the stringent requirements. The performance of the LFI WGs is in line with requirements, and the WGs were successfully space qualified.Comment: this paper is part of the Prelaunch status LFI papers published on JINST: http://www.iop.org/EJ/journal/-page=extra.proc5/jins
    • …
    corecore