2,974 research outputs found
Spin and energy relaxation in germanium studied by spin-polarized direct-gap photoluminescence
Spin orientation of photoexcited carriers and their energy relaxation is
investigated in bulk Ge by studying spin-polarized recombination across the
direct band gap. The control over parameters such as doping and lattice
temperature is shown to yield high polarization degree, namely larger than 40%,
as well as a fine-tuning of the angular momentum of the emitted light with a
complete reversal between right- and left-handed circular polarization. By
combining the measurement of the optical polarization state of band-edge
luminescence and Monte Carlo simulations of carrier dynamics, we show that
these very rich and complex phenomena are the result of the electron
thermalization and cooling in the multi-valley conduction band of Ge. The
circular polarization of the direct-gap radiative recombination is indeed
affected by energy relaxation of hot electrons via the X valleys and the
Coulomb interaction with extrinsic carriers. Finally, thermal activation of
unpolarized L valley electrons accounts for the luminescence depolarization in
the high temperature regime
Cosmological Properties of a Gauged Axion
We analyze the most salient cosmological features of axions in extensions of
the Standard Model with a gauged anomalous extra U(1) symmetry. The model is
built by imposing the constraint of gauge invariance in the anomalous effective
action, which is extended with Wess-Zumino counterterms. These generate
axion-like interactions of the axions to the gauge fields and a gauged shift
symmetry. The scalar sector is assumed to acquire a non-perturbative potential
after inflation, at the electroweak phase transition, which induces a mixing of
the Stuckelberg field of the model with the scalars of the electroweak sector,
and at the QCD phase transition. We discuss the possible mechanisms of
sequential misalignments which could affect the axions of these models, and
generated, in this case, at both transitions. We compute the contribution of
these particles to dark matter, quantifying their relic densities as a function
of the Stuckelberg mass. We also show that models with a single anomalous U(1)
in general do not account for the dark energy, due to the presence of mixed
U(1)-SU(3) anomalies.Comment: 29 pages, 5 figures. Revised version, accepted by Phys. Rev.
Molecular mechanisms of the acute kidney injury to chronic kidney disease transition: An updated view
Increasing evidence has demonstrated the bidirectional link between acute kidney injury (AKI) and chronic kidney disease (CKD) such that, in the clinical setting, the new concept of a unified syndrome has been proposed. The pathophysiological reasons, along with the cellular and molecular mechanisms, behind the ability of a single, acute, apparently self-limiting event to drive chronic kidney disease progression are yet to be explained. This acute injury could promote progression to chronic disease through different pathways involving the endothelium, the inflammatory response and the development of fibrosis. The interplay among endothelial cells, macrophages and other immune cells, pericytes and fibroblasts often converge in the tubular epithelial cells that play a central role. Recent evidence has strengthened this concept by demonstrating that injured tubules respond to acute tubular necrosis through two main mechanisms: The polyploidization of tubular cells and the proliferation of a small population of self-renewing renal progenitors. This alternative pathophysiological interpretation could better characterize functional recovery after AKI
The Planck-LFI flight model composite waveguides
The Low Frequency Instrument on board the PLANCK satellite is designed to
give the most accurate map ever of the CMB anisotropy of the whole sky over a
broad frequency band spanning 27 to 77 GHz. It is made of an array of 22
pseudo-correlation radiometers, composed of 11 actively cooled (20 K) Front End
Modules (FEMs), and 11 Back End Modules (BEMs) at 300K. The connection between
the two parts is made with rectangular Wave Guides. Considerations of different
nature (thermal, electromagnetic and mechanical), imposed stringent
requirements on the WGs characteristics and drove their design. From the
thermal point of view, the WG should guarantee good insulation between the FEM
and the BEM sections to avoid overloading the cryocooler. On the other hand it
is essential that the signals do not undergo excessive attenuation through the
WG. Finally, given the different positions of the FEM modules behind the focal
surface and the mechanical constraints given by the surrounding structures,
different mechanical designs were necessary. A composite configuration of
Stainless Steel and Copper was selected to satisfy all the requirements. Given
the complex shape and the considerable length (about 1.5-2 m), manufacturing
and testing the WGs was a challenge. This work deals with the development of
the LFI WGs, including the choice of the final configuration and of the
fabrication process. It also describes the testing procedure adopted to fully
characterize these components from the electromagnetic point of view and the
space qualification process they underwent. Results obtained during the test
campaign are reported and compared with the stringent requirements. The
performance of the LFI WGs is in line with requirements, and the WGs were
successfully space qualified.Comment: this paper is part of the Prelaunch status LFI papers published on
JINST: http://www.iop.org/EJ/journal/-page=extra.proc5/jins
- …