12 research outputs found
N-Acetylcysteine normalizes brain oxidative stress and neuroinflammation observed after protracted ethanol abstinence: a preclinical study in long-term ethanol-experienced male rats
Rationale Using a preclinical model based on the Alcohol Deprivation Effect (ADE), we have reported that N-Acetylcysteine (NAC) can prevent the relapse-like drinking behaviour in long-term ethanol-experienced male rats. Objectives To investigate if chronic ethanol intake and protracted abstinence affect several glutamate transporters and whether NAC, administered during the withdrawal period, could restore the ethanol-induced brain potential dysfunctions. Furthermore, the antioxidant and anti-inflammatory effects of NAC during abstinence in rats under the ADE paradigm were also explored. Methods The expression of GLT1, GLAST and xCT in nucleus accumbens (Nacc) and dorsal striatum (DS) of male Wistar was analysed after water and chronic ethanol intake. We used the model based on the ADE within another cohort of male Wistar rats. During the fourth abstinence period, rats were treated for 9 days with vehicle or NAC (60, 100 mg/kg; s.c.). The effects of NAC treatment on (i) glutamate transporters expression in the Nacc and DS, (ii) the oxidative status in the hippocampus (Hip) and amygdala (AMG) and (iii) some neuroinflammatory markers in prefrontal cortex (PFC) were tested. Results NAC chronic administration during protracted abstinence restored oxidative stress markers (GSSG and GGSH/GSH) in the Hip. Furthermore, NAC was able to normalize some neuroinflammation markers in PFC without normalizing the observed downregulation of GLT1 and GLAST in Nacc. Conclusions NAC restores brain oxidative stress and neuroinflammation that we previously observed after protracted ethanol abstinence in long-term ethanol-experienced male rats. This NAC effect could be a plausible mechanism for its anti-relapse effect. Also, brain oxidative stress and neuroinflammation could represent and identify plausible targets for searching new anti-relapse pharmacotherapies
Different brain oxidative and neuroinflammation status in rats during prolonged abstinence depending on their ethanol relapse-like drinking behavior: Effects of ethanol reintroduction
Rationale: Accumulating evidence suggests that chronic alcohol consumption is associated with excessive oxidative damage and neuroinflammatory processes and these events have been associated to early alcohol withdrawal. In the present research we wonder if brain oxidative stress and neuroinflammation remains altered during prolonged withdrawal situations and whether these alterations can be correlated with relapse behavior in alcohol consumption. The effects of alcohol reintroduction were also evaluated. Methods: We have used a model based on the alcohol deprivation effect (ADE) within a cohort of wild-type male Wistar rats. Two subpopulations were identified according to the alcohol relapse-like drinking behavior displayed (ADE and NO-ADE subpopulations). Oxidized and reduced glutathione content was determined within the hippocampus and the amygdala using a mass spectrometry method. The levels of mRNA of seven different inflammatory mediators in the prefrontal cortex of rats were quantified. All the analyses were performed in two different conditions: after 21-day alcohol deprivation (prolonged abstinence) and after 24 h of ethanol reintroduction in both subpopulations. Results: ADE and NO-ADE rats showed different endophenotypes. ADE rats always displayed a significant lower alcohol intake rate and ethanol preference than NO-ADE rats. The results also demonstrated the existence of altered brain redox and neuroinflammation status after prolonged abstinence exclusively in ADE rats. Moreover, when ethanol was reintroduced in the ADE subpopulation, altered oxidative stress and neuroinflammatory markers were restored. Conclusions: Present findings provide new mechanisms underlying the neurobiology of relapse behavior and suggest the development of new pharmacological approaches to treat alcohol-induced relapse
RhoE participates in the stimullation of the inflammatory response induced by ethanol in astrocytes
Astroglial cells are involved in the neuropathogenesis of several inflammatory diseases of the brain, where the activation of inflammatory mediators and cytokines plays an important role. We have previously demonstrated that ethanol up-regulates inflammatory mediators in both brain and astroglial cells. Since Rho GTPases are involved in inflammatory responses of astrocytes where loss of stress fibers takes place and RhoE/Rnd3 disorganizes the actin cytoskeleton, the aim of the present study was to investigate the implication of this protein in the stimulation of inflammatory signaling induced by ethanol. Our findings show that RhoE expression induces a decrease in both RhoA and Rac. In addition, RhoE not only induces actin cytoskeleton disorganization but it also stimulates both the IRAK/ERK/NF-κB pathway and the COX-2 expression associated with the inflammatory response in these cells. Our results also show that ethanol exposure induces RhoE signaling in astrocytes. Preincubation of astrocytes with GF109203X, an inhibitor of PKCs, reduces the RhoE levels and abolishes the ethanol-induced activation of IRAK, NF-κB and the COX-2 expression. Furthermore, RhoE overexpression restores ethanol responses in astrocytes treated with the PKCs inhibitor. Altogether, our findings suggest that this small GTPase is involved in the stimulation of the inflammatory signaling induced by ethanol in astrocytes. These findings provide new insights into the molecular mechanism involved in the inflammatory responses in astrocytes
Local acamprosate modulates dopamine release in the rat nucleus accumbens through NMDA receptors: an in vivo microdialysis study
The effects of acamprosate on the in vivo dopamine extracellular levels in the nucleus accumbens and the involvement of N-methyl-D-aspartate (NMDA) receptors in these effects were investigated. Microdialysis in freely moving rats was used to assess dopamine levels before and during simultaneous perfusion of acamprosate and/or different agonists or antagonists of NMDA receptors. Perfusion with acamprosate at concentrations of 0.5 and 5 mM provoked a concentration-dependent increase in extracellular dopamine in nucleus accumbens. The lowest concentration of acamprosate assayed (0.05 mM) had no effect on dopamine levels. Infusion of NMDA (25 and 500 µM) and the glutamate uptake blocker, L-trans-pyrrolidine-2,4-dicarboxilic acid (PDC) (0.5 mM) into the NAc caused a significant increase in DA, whereas acamprosate (0.05 mM) co-infusion with these compounds blocked or attenuated the NMDA and PDC-induced increases in DA levels. Co-infusion of the selective antagonist of NMDA receptors, DL-2-amino-5-phosphonopentanoic acid (AP5) (400 µM) with acamprosate (0.5 mM), did not reduce the increase of DA levels induced by acamprosate. These results demonstrate that acamprosate is able to modulate DA extracellular levels in NAc via NMDA receptors and suggest that acamprosate acts as an antagonist of NMDA receptors
Acamprosate blocks the increase in dopamine extracellular levels in nucleus accumbens evoked by chemical stimulation of the ventral hippocampus
Recently, we have shown that acamprosate is able to modulate extracellular dopamine (DA) levels in the nucleus accumbens (NAc) and may act as an antagonist of N-methyl-D-aspartate (NMDA) receptors. Neurochemical studies show that chemical stimulation (using NMDA) of the ventral subiculum (vSub) of the hippocampus produces robust and sustained increases in extracellular DA levels in the NAc, an effect mediated through ionotropic glutamate (iGlu) receptors. The present study examines whether acamprosate locally infused in the NAc of rats could block or attenuate the increase in NAc extracellular DA elicited by chemical stimulation (with 5 mM NMDA) of the ventral subiculum of the hippocampus. The stimulation of the vSub during perfusion of artificial cerebrospinal fluid in NAc induced a significant and persistent increase in NAc DA levels. Reverse dialysis of 0.05 mM acamprosate in NAc blocked the increase in DA evoked by the chemical stimulation of the vSub. These data support the possibility that the antagonism at the NMDA receptors in NAc can explain, at least in part, the mechanism of action of this drug
RhoE stimulates neurite-like outgrowth in PC12 cells through inhibition of the RhoA/ROCK-I signalling
Neurite formation involves coordinated changes between the actin cytoskeleton and the microtubule network. Rho GTPases are clearly implicated in several aspects of neuronal development and function. Indeed, RhoA is a negative regulator of neurite outgrowth and its effector Rho-kinase mediates the Rho-driven neurite retraction. Considering that RhoE/round protein (Rnd3) acts antagonistically to RhoA and it is also able to bind and inhibit rho kinase-I (p160ROCK) - ROCK-I, it is tempting to speculate a role of RhoE in neurite formation. We show for the first time that, in the absence of nerve growth factor (NGF), RhoE induces neurite-like outgrowth. Our results demonstrate that over-expression of RhoE decreases the activity of RhoA and reduces the expression of both ROCK-I and the phosphorylated myosin light chain phosphatase (MLCPp). Conversely, over-expression of either active RhoA or ROCK-I abolishes the RhoE-promoted neurite outgrowth, suggesting that RhoE induces neurite-like formation through inhibition of the RhoA/ROCK-I signalling. We also show that Rac and Cdc42 have a role in RhoE-induced neurite outgrowth. Finally, the present data further indicate that RhoE may be involved in the NGF-induced neurite outgrowth in PC12 cells, as depletion of RhoE by siRNA reduces the neurite formation induced by NGF. These findings provide new insights into the molecular mechanism implicated in neuronal development and may provide novel therapeutic targets in neurodegenerative disorders
The RhoA/ROCK-I/MLC pathway is involved in the ethanol-induced apoptosis by anoikis in astrocytes
Anoikis is a programmed cell death induced by loss of anchorage that is involved in tissue homeostasis and disease. Ethanol is an important teratogen that induces marked central nervous system (CNS) dysfunctions. Here we show that astrocytes exposed to ethanol undergo morphological changes associated with anoikis, including the peripheral reorganization of both focal adhesions and actin-myosin system, cell contraction, membrane blebbing and chromatin condensation. We found that either the small GTPase RhoA or its effector ROCK-I (Rho kinase), promotes membrane blebbing in astrocytes. Ethanol induces a ROCK-I activation that is mediated by RhoA, rather than by caspase-3 cleavage. Accordingly, the RhoA inhibitor C3, completely abolishes the ethanol-induced ROCK-I activation. Furthermore, inhibition of both RhoA and ROCK prevents the membrane blebbing induced by ethanol. Ethanol also promotes myosin light chain (MLC) phosphorylation, which might be involved in the actin myosin contraction. All of these findings strongly support that ethanol-exposed astrocytes undergo apoptosis by anoikis and also that the RhoA/ROCK-I/MLC pathway participates in this process
Assessement and modulation of acamprosate intestinal absorption: comparative studies using in situ, in vitro (CACO-2 cell monolayers) and in vivo models
The purpose of this study was to explore the intestinal absorption mechanism of acamprosate and to attempt to improve the bioavailability (BA) of the drug through modulation of its intestinal absorption using two enhancers (polysorbate 80 and sodium caprate) based on in situ, in vitro and in vivo models and comparing the results obtained. Intestinal transport of the drug, in the absence and in presence of polysorbate 80 (0.06, 0.28 and 9.6 mM) or sodium caprate (13 and 16 mM) was measured by using an in situ rat gut technique and Caco-2 cell monolayers. Additionally, the effect of sodium caprate on drug oral bioavailability, measured as urinary recovery, was quantified by performing in vivo experiments with the rat as animal model. Only sodium caprate was able to increase the absorption rate constant (ka) of acamprosate in the mid-intestine of the rats from 0.29 ± 0.07 h−1 in the absence of the promoter to 0.51 ± 0.19 h−1 in the presence of C10 16 mM, along with the apparent permeability (Papp) obtained in Caco-2 cells (around two-fold). However, the drug bioavailability in rats (around 20%) did not improve in the presence of any of the concentrations tested (13, 16 and 50 mM). It is concluded that acamprosate absorption likely occurs via paracellular pathway and can be enhanced by sodium caprate in situ and in vitro but not in vivo thus suggesting that although in situ and in vitro studies could be useful in early screening to select a potential promoter, in vivo studies in animal models are necessary to confirm the utility of the enhancer and to determine the influence of physiological variables
Neural differentiation from human embryonic stem cells as a tool to study early brain development and the neuroteratogenic effects of ethanol.
The in vitro generation of neural cells from human embryonic stem cells is a powerful tool to acquire better knowledge of the cellular and molecular events involved in early human neural and brain development under physiological and pathological conditions. Prenatal alcohol exposure can induce important anomalies in the developing brain, the embryogenesis being an important critical period for the craniofacial defects and mental disabilities associated with fetal alcohol syndrome. Here, we report the generation of neural progenitors (NPs) from human embryonic stem cells. Neuroepithelial progenitors display the morphological and functional characteristics of their embryonic counterparts and the proper timing of neurons and glia cells generation. Immunocytochemical and real time (RT)-polymerase chain reaction analyses reveal that cells appeared as clusters during neuroepithelial cell proliferation and that the genes associated with the neuroectodermal (Pax-6) and the endodermic (α-fetoprotein) lineages decreased in parallel to the upregulation of the genes of NPs (nestin and Tuj1), followed by their differentiation into neurons (MAP-2+, GABA+), oligodendrocytes [galactocerebroside (GalC+)], and astrocytes (GFAP+). We further demonstrate, for the first time, that human NPs express the endocannabinoid receptors (CB1 and CB2) and the enzymes involved in endocannabinoids synthesis (NAPE-PLD) and degradation (FAAH). Using this in vitro culture, we demonstrate that ethanol exposure impairs NPs survival, affects the differentiation of NPs into neurons and astrocytes, disrupts the actin cytoskeleton, and affects the expression of different genes associated with neural differentiation. The results provide new insights into the effects of ethanol on human embryogenesis and neuroprogenitors and offer an opportunity to delineate potential therapeutic strategies to restore early ethanol-induced brain damage
RhoE interferes with Rb inactivation and regulates the proliferation and survival of the U87 human glioblastoma cell line
Rho GTPases are important regulators of actin cytoskeleton, but they are also involved in cell proliferation, transformation and oncogenesis. One of this proteins, RhoE, inhibits cell proliferation, however the mechanism that regulates this effect remains poorly understood. Therefore, we undertook the present study to determine the role of RhoE in the regulation of cell proliferation. For this purpose we generated an adenovirus system to overexpress RhoE in U87 glioblastoma cells. Our results show that RhoE disrupts actin cytoskeleton organization and inhibits U87 glioblastoma cell proliferation. Importantly, RhoE expressing cells show a reduction in Rb phosphorylation and in cyclin D1 expression. Furthermore, RhoE inhibits ERK activation following serum stimulation of quiescent cells. Based in these findings, we propose that RhoE inhibits ERK activation, thereby decreasing cyclin D1 expression and leading to a reduction in Rb inactivation, and that this mechanism is involved in the RhoE-induced cell growth inhibition. Moreover, we also demonstrate that RhoE induces apoptosis in U87 cells and also in colon carcinoma and melanoma cells. These results indicate that RhoE plays an important role in the regulation of cell proliferation and survival, and suggest that this protein may be considered as an oncosupressor since it is capable to induce apoptosis in several tumor cell lines