17,776 research outputs found
Robustness of the avalanche dynamics in data packet transport on scale-free networks
We study the avalanche dynamics in the data packet transport on scale-free
networks through a simple model. In the model, each vertex is assigned a
capacity proportional to the load with a proportionality constant . When
the system is perturbed by a single vertex removal, the load of each vertex is
redistributed, followed by subsequent failures of overloaded vertices. The
avalanche size depends on the parameter as well as which vertex triggers
it. We find that there exists a critical value at which the avalanche
size distribution follows a power law. The critical exponent associated with it
appears to be robust as long as the degree exponent is between 2 and 3, and is
close in value to that of the distribution of the diameter changes by single
vertex removal.Comment: 5 pages, 7 figures, final version published in PR
Establishing links between organizational climate, employee well-being and historical patient outcomes
This research undertaken in collaboration with Queensland Health analysed the links between dimensions of workplace climate/employee well-being contained in a number of
Queensland Health databases, including the Patient Satisfaction Survey, the Clinical Incident database, the compliments and complaints database, the Variable Life Adjusted Display (VLAD) Database and the Better Workplaces
Staff Opinion Survey database. Queensland Health sought to identify in what ways workplace climate is related to patient outcomes using existing datasets collected within the Queensland Health Centre for Healthcare Improvement. The process of establishing links involved matching aggregated data for specific facilities (where possible), or failing that, larger facilities (e.g. Hospital), or the Health Service District. Once the datasets had been matched on location or facility, correlations were calculated between the aggregated scores. The results demonstrated links between the data sets. These links showed that a better workplace climate is associated with greater reported numbers of clinical incidents, especially âno harmâ clinical incidents. There was also a link between workplace climate and patient compliments/complaints which show that unsolicited compliments received from patients and their families are clearly related to a number of positive aspects of workplace climate (workplace morale, role clarity, and appraisal and recognition) and individual
morale. The results linking workplace climate and patient satisfaction showed that there is a strong positive relationship between overall patient satisfaction and role clarity, and a negative relationship between overall patient satisfaction and both workplace distress and
excessive work demands. While these results relate to historical data and therefore should not be construed to reflect the current state of operation within Queensland Health, they are still indicative of some very important
relationships. This is the first study to demonstrate that more positive clinical management practices, better perceptions of the workplace climate and better employee
well-being are a reflection of a better incident reporting and learning culture in a health care organization, ultimately resulting in improved patient outcomes
Intrinsic degree-correlations in static model of scale-free networks
We calculate the mean neighboring degree function and
the mean clustering function of vertices with degree as a function
of in finite scale-free random networks through the static model. While
both are independent of when the degree exponent , they show
the crossover behavior for from -independent behavior for
small to -dependent behavior for large . The -dependent behavior
is analytically derived. Such a behavior arises from the prevention of
self-loops and multiple edges between each pair of vertices. The analytic
results are confirmed by numerical simulations. We also compare our results
with those obtained from a growing network model, finding that they behave
differently from each other.Comment: 8 page
It's Difficult to Explain Away the Appearance That Causation Comes in Degrees: A Reply to Sartorio
Does the relation of (actual) causation admit of degrees? Is it sensible to say, for example, that âas compared to his consuming the light beer, Clement's consuming the moonshine was more a cause of his becoming drunkâ? Suppose the answer is âyesâ. Suppose also that country A unjustifiably ignites a lethal war with country B, and you intuit that, while most combatants of A are liable to lethal counterattack, most non-combatants of A aren't similarly liable. Then, you might support your intuition by reasoning as follows. âPerhaps most non-combatants of A causally contribute to A's unjust, lethal war effort. However, unlike most combatants of A, their causal contributions are not of such a degree that makes them liable to lethal counterattackâ. Such reasoning is rejected by Carolina Sartorio. This is due to the recent revealing of a certain puzzle, one which suggests to Sartorio that causation does not come in degrees. Now, one motivation for Sartorio's reaction to the aforementioned puzzle is her thought that we can, for the most part, âexplain awayâ the âillusionâ that causation comes in degrees. I will argue that Sartorio insufficiently supports her foregoing thought. Using Sartorio's resources, we cannot (largely) âexplain awayâ the widespread appearance that causation comes in degrees
A system to enrich for primitive streak-derivatives, definitive endoderm and mesoderm, from pluripotent cells in culture
Two lineages of endoderm develop during mammalian embryogenesis, the primitive endoderm in the pre-implantation blastocyst and the definitive endoderm at gastrulation. This complexity of endoderm cell populations is mirrored during pluripotent cell differentiation in vitro and has hindered the identification and purification of the definitive endoderm for use as a substrate for further differentiation. The aggregation and differentiation of early primitive ectoderm-like (EPL) cells, resulting in the formation of EPL-cell derived embryoid bodies (EPLEBs), is a model of gastrulation that progresses through the sequential formation of primitive streak-like intermediates to nascent mesoderm and more differentiated mesoderm populations. EPL cell-derived EBs have been further analysed for the formation of definitive endoderm by detailed morphological studies, gene expression and a protein uptake assay. In comparison to embryoid bodies derived from ES cells, which form primitive and definitive endoderm, the endoderm compartment of embryoid bodies formed from EPL cells was comprised almost exclusively of definitive endoderm. Definitive endoderm was defined as a population of squamous cells that expressed Sox17, CXCR4 and Trh, which formed without the prior formation of primitive endoderm and was unable to endocytose horseradish peroxidase from the medium. Definitive endoderm formed in EPLEBs provides a substrate for further differentiation into specific endoderm lineages; these lineages can be used as research tools for understanding the mechanisms controlling lineage establishment and the nature of the transient intermediates formed. The similarity between mouse EPL cells and human ES cells suggests EPLEBs can be used as a model system for the development of technologies to enrich for the formation of human ES cell-derived definitive endoderm in the future.Sveltana Vassilieva, Hweee Ngee Goh, Kevin X. Lau, James N. Hughes, Mary Familari, Peter D. Rathjen and Joy Rathje
Sandpiles on multiplex networks
We introduce the sandpile model on multiplex networks with more than one type
of edge and investigate its scaling and dynamical behaviors. We find that the
introduction of multiplexity does not alter the scaling behavior of avalanche
dynamics; the system is critical with an asymptotic power-law avalanche size
distribution with an exponent on duplex random networks. The
detailed cascade dynamics, however, is affected by the multiplex coupling. For
example, higher-degree nodes such as hubs in scale-free networks fail more
often in the multiplex dynamics than in the simplex network counterpart in
which different types of edges are simply aggregated. Our results suggest that
multiplex modeling would be necessary in order to gain a better understanding
of cascading failure phenomena of real-world multiplex complex systems, such as
the global economic crisis.Comment: 7 pages, 7 figure
- âŚ