97 research outputs found

    Coded Speech Quality Measurement by a Non-Intrusive PESQ-DNN

    Full text link
    Wideband codecs such as AMR-WB or EVS are widely used in (mobile) speech communication. Evaluation of coded speech quality is often performed subjectively by an absolute category rating (ACR) listening test. However, the ACR test is impractical for online monitoring of speech communication networks. Perceptual evaluation of speech quality (PESQ) is one of the widely used metrics instrumentally predicting the results of an ACR test. However, the PESQ algorithm requires an original reference signal, which is usually unavailable in network monitoring, thus limiting its applicability. NISQA is a new non-intrusive neural-network-based speech quality measure, focusing on super-wideband speech signals. In this work, however, we aim at predicting the well-known PESQ metric using a non-intrusive PESQ-DNN model. We illustrate the potential of this model by predicting the PESQ scores of wideband-coded speech obtained from AMR-WB or EVS codecs operating at different bitrates in noisy, tandeming, and error-prone transmission conditions. We compare our methods with the state-of-the-art network topologies of QualityNet, WaweNet, and DNSMOS -- all applied to PESQ prediction -- by measuring the mean absolute error (MAE) and the linear correlation coefficient (LCC). The proposed PESQ-DNN offers the best total MAE and LCC of 0.11 and 0.92, respectively, in conditions without frame loss, and still is best when including frame loss. Note that our model could be similarly used to non-intrusively predict POLQA or other (intrusive) metrics. Upon article acceptance, code will be provided at GitHub

    Efficient Acoustic Echo Suppression with Condition-Aware Training

    Full text link
    The topic of deep acoustic echo control (DAEC) has seen many approaches with various model topologies in recent years. Convolutional recurrent networks (CRNs), consisting of a convolutional encoder and decoder encompassing a recurrent bottleneck, are repeatedly employed due to their ability to preserve nearend speech even in double-talk (DT) condition. However, past architectures are either computationally complex or trade off smaller model sizes with a decrease in performance. We propose an improved CRN topology which, compared to other realizations of this class of architectures, not only saves parameters and computational complexity, but also shows improved performance in DT, outperforming both baseline architectures FCRN and CRUSE. Striving for a condition-aware training, we also demonstrate the importance of a high proportion of double-talk and the missing value of nearend-only speech in DAEC training data. Finally, we show how to control the trade-off between aggressive echo suppression and near-end speech preservation by fine-tuning with condition-aware component loss functions.Comment: 5 pages, accepted to WASPAA 202

    Employing Real Training Data for Deep Noise Suppression

    Full text link
    Most deep noise suppression (DNS) models are trained with reference-based losses requiring access to clean speech. However, sometimes an additive microphone model is insufficient for real-world applications. Accordingly, ways to use real training data in supervised learning for DNS models promise to reduce a potential training/inference mismatch. Employing real data for DNS training requires either generative approaches or a reference-free loss without access to the corresponding clean speech. In this work, we propose to employ an end-to-end non-intrusive deep neural network (DNN), named PESQ-DNN, to estimate perceptual evaluation of speech quality (PESQ) scores of enhanced real data. It provides a reference-free perceptual loss for employing real data during DNS training, maximizing the PESQ scores. Furthermore, we use an epoch-wise alternating training protocol, updating the DNS model on real data, followed by PESQ-DNN updating on synthetic data. The DNS model trained with the PESQ-DNN employing real data outperforms all reference methods employing only synthetic training data. On synthetic test data, our proposed method excels the Interspeech 2021 DNS Challenge baseline by a significant 0.32 PESQ points. Both on synthetic and real test data, the proposed method beats the baseline by 0.05 DNSMOS points - although PESQ-DNN optimizes for a different perceptual metric
    • …
    corecore