125 research outputs found

    Vehicle development, pharmacokinetics and toxicity of the anti-invasive agent 4-fluoro-3’,4’,5’-trimethoxychalcone in rodents

    Get PDF
    Effective inhibitors of invasion and metastasis represent a serious unmet clinical need. We have recently identified 4-fluoro-3',4',5'-trimethoxychalcone or C-16 as a potent anti-invasive molecule. In this paper, we report on the development of an optimized vehicle for oral administration of C16. We also explore its pharmacokinetic and toxicity profile in rodents as a prelude to a broad-scope evaluation as a pharmacological tool in animal models of disease. C16 showed suboptimal pharmacokinetics with limited oral bioavailability and whole blood stability. Rapid metabolism with elimination via glutathione conjugation was observed. An oral dosing routine using medicated gels was developed to overcome bioavailability issues and yielded sustained whole blood levels above the half maximal effective concentration (EC50) in a 7-day study. The compound proved well-tolerated in acute and chronic experiments at 300 mg/kg PO dosing. The medicated gel formulation is highly suitable for evaluation of C16 in animal models of disease

    Caspase-14 reveals its secrets

    Get PDF
    Caspase-14 is a unique member of the evolutionarily conserved family of cysteinyl aspartate–specific proteinases, which are mainly involved in inflammation and apoptosis. However, recent evidence also implicates these proteases in proliferation and differentiation. Although most caspases are ubiquitously expressed, caspase-14 expression is confined mainly to cornifying epithelia, such as the skin. Moreover, caspase-14 activation correlates with cornification, indicating that it plays a role in terminal keratinocyte differentiation. The determination of in vitro conditions for caspase-14 activity paved the way to identifying its substrates. The recent development of caspase-14–deficient mice underscored its importance in the correct degradation of (pro)filaggrin and in the formation of the epidermal barrier that protects against dehydration and UVB radiation. Here, we review the current knowledge on caspase-14 in skin homeostasis and disease

    Early and late effects of pharmacological ALK inhibition on the neuroblastoma transcriptome

    Get PDF
    Background: Neuroblastoma is an aggressive childhood malignancy of the sympathetic nervous system. Despite multi-modal therapy, survival of high-risk patients remains disappointingly low, underscoring the need for novel treatment strategies. The discovery of ALK activating mutations opened the way to precision treatment in a subset of these patients. Previously, we investigated the transcriptional effects of pharmacological ALK inhibition on neuroblastoma cell lines, six hours after TAE684 administration, resulting in the 77-gene ALK signature, which was shown to gradually decrease from 120 minutes after TAE684 treatment, to gain deeper insight into the molecular effects of oncogenic ALK signaling. Aim: Here, we further dissected the transcriptional dynamic profiles of neuroblastoma cells upon TAE684 treatment in a detailed timeframe of ten minutes up to six hours after inhibition, in order to identify additional early targets for combination treatment. Results: We observed an unexpected initial upregulation of positively regulated MYCN target genes following subsequent downregulation of overall MYCN activity. In addition, we identified adrenomedullin (ADM), previously shown to be implicated in sunitinib resistance, as the earliest response gene upon ALK inhibition. Conclusions: We describe the early and late effects of ALK inhibitor TAE684 treatment on the neuroblastoma transcriptome. The observed unexpected upregulation of ADM warrants further investigation in relation to putative ALK resistance in neuroblastoma patients currently undergoing ALK inhibitor treatment

    Functional protection by acute phase proteins alpha(1)-acid glycoprotein and alpha(1)-antitrypsin against ischemia/reperfusion injury by preventing apoptosis and inflammation.

    Get PDF
    BACKGROUND: Ischemia followed by reperfusion (I/R) causes apoptosis, inflammation, and tissue damage leading to organ malfunction. Ischemic preconditioning can protect against such injury. This study investigates the contribution of the acute phase proteins alpha(1)-acid glycoprotein (AGP) and alpha(1)-antitrypsin (AAT) to the protective effect of ischemic preconditioning in the kidney. METHODS AND RESULTS: Exogenous AGP and AAT inhibited apoptosis and inflammation after 45 minutes of renal I/R in a murine model. AGP and AAT administered at reperfusion prevented apoptosis at 2 hours and 24 hours, as evaluated by the presence of internucleosomal DNA cleavage, terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling, and the determination of renal caspase-1- and caspase-3-like activity. AGP and AAT exerted anti-inflammatory effects, as reflected by reduced renal tumor necrosis factor-alpha expression and neutrophil influx after 24 hours. In general, these agents improved renal function. Similar effects were observed when AGP and AAT were administered 2 hours after reperfusion but to a lesser extent and without functional improvement. Moreover, I/R elicited an acute phase response, as reflected by elevated serum AGP and serum amyloid P (SAP) levels after 24 hours, and increased hepatic acute phase protein mRNA levels after 18 hours of renal reperfusion. CONCLUSIONS: We propose that the antiapoptotic and anti-inflammatory effects of AGP and AAT contribute to the delayed type of protection associated with ischemic preconditioning and other insults. This mechanism is potentially involved in the course of many clinical conditions associated with I/R injury. Moreover, exogenous administration of these proteins may provide new therapeutic means of treatmen

    Regulation of the expression and processing of caspase-12

    Get PDF
    Phylogenetic analysis clusters caspase-12 with the inflammatory caspases 1 and 11. We analyzed the expression of caspase-12 in mouse embryos, adult organs, and different cell types and tested the effect of interferons (IFNs) and other proinflammatory stimuli. Constitutive expression of the caspase-12 protein was restricted to certain cell types, such as epithelial cells, primary fibroblasts, and L929 fibrosarcoma cells. In fibroblasts and B16/B16 melanoma cells, caspase-12 expression is stimulated by IFN-γ but not by IFN-α or -β. The effect is increased further when IFN-γ is combined with TNF, lipopolysaccharide (LPS), or dsRNA. These stimuli also induce caspase-1 and -11 but inhibit the expression of caspase-3 and -9. In contrast to caspase-1 and -11, no caspase-12 protein was detected in macrophages in any of these treatments. Transient overexpression of full-length caspase-12 leads to proteolytic processing of the enzyme and apoptosis. Similar processing occurs in TNF-, LPS-, Fas ligand–, and thapsigargin (Tg)-induced apoptosis. However, B16/B16 melanoma cells die when treated with the ER stress–inducing agent Tg whether they express caspase-12 or not

    Dual Signaling of the Fas Receptor: Initiation of Both Apoptotic and Necrotic Cell Death Pathways

    Get PDF
    Murine L929 fibrosarcoma cells were transfected with the human Fas (APO-1/CD95) receptor, and the role of various caspases in Fas-mediated cell death was assessed. Proteolytic activation of procaspase-3 and -7 was shown by Western analysis. Acetyl-Tyr-Val-Ala-Asp-chloromethylketone and benzyloxycarbonyl-Asp(OMe)-Glu(OMe)-Val-Asp(OMe)-fluoromethylketone, tetrapeptide inhibitors of caspase-1– and caspase-3–like proteases, respectively, failed to block Fas-induced apoptosis. Unexpectedly, the broad-spectrum caspase inhibitors benzyloxycarbonyl-Val-Ala-Asp(OMe)-fluoromethylketone and benzyloxycarbonyl-Asp(OMe)-fluoromethylketone rendered the cells even more sensitive to Fas-mediated cell death, as measured after 18 h incubation. However, when the process was followed microscopically, it became clear that anti-Fas–induced apoptosis of Fas-transfected L929 cells was blocked during the first 3 h, and subsequently the cells died by necrosis. As in tumor necrosis factor (TNF)-induced necrosis, Fas treatment led to accumulation of reactive oxygen radicals, and Fas-mediated necrosis was inhibited by the oxygen radical scavenger butylated hydroxyanisole. However, in contrast to TNF, anti-Fas did not activate the nuclear factor κB under these necrotic conditions. These results demonstrate the existence of two different pathways originating from the Fas receptor, one rapidly leading to apoptosis, and, if this apoptotic pathway is blocked by caspase inhibitors, a second directing the cells to necrosis and involving oxygen radical production

    In silico discovery of a FOXM1 driven embryonal signaling pathway in therapy resistant neuroblastoma tumors

    Get PDF
    Chemotherapy resistance is responsible for high mortality rates in neuroblastoma. MYCN, an oncogenic driver in neuroblastoma, controls pluripotency genes including LIN28B. We hypothesized that enhanced embryonic stem cell (ESC) gene regulatory programs could mark tumors with high pluripotency capacity and subsequently increased risk for therapy failure. An ESC miRNA signature was established based on publicly available data. In addition, an ESC mRNA signature was generated including the 500 protein coding genes with the highest positive expression correlation with the ESC miRNA signature score in 200 neuroblastomas. High ESC m(i)RNA expression signature scores were significantly correlated with poor neuroblastoma patient outcome specifically in the subgroup of MYCN amplified tumors and stage 4 nonamplified tumors. Further data-mining identified FOXM1, as the major predicted driver of this ESC signature, controlling a large set of genes implicated in cell cycle control and DNA damage response. Of further interest, re-analysis of published data showed that MYCN transcriptionally activates FOXM1 in neuroblastoma cells. In conclusion, a novel ESC m(i)RNA signature stratifies neuroblastomas with poor prognosis, enabling the identification of therapy-resistant tumors. The finding that this signature is strongly FOXM1 driven, warrants for drug design targeted at FOXM1 or key components controlling this pathway

    Cop1 constitutively regulates c-Jun protein stability and functions as a tumor suppressor in mice

    Get PDF
    Biochemical studies have suggested conflicting roles for the E3 ubiquitin ligase constitutive photomorphogenesis protein 1 (Cop 1; also known as Rfwd2) in tumorigenesis, providing evidence for both the oncoprotein c-Jun and the tumor suppressor p53 as its targets. Here we present what we believe to be the first in vivo investigation of the role of Cop1 in cancer etiology. Using an innovative genetic approach to generate an allelic series of Cop1, we found that Cop1 hypomorphic mice spontaneously developed malignancy at a high frequency in the first year of life and were highly susceptible to radiation-induced lymphomagenesis. Further analysis revealed that c-Jun was a key physiological target for Cop1 and that Cop1 constitutively kept c-Jun at low levels in vivo and thereby modulated c-Jun/AP-1 transcriptional activity. Importantly, Cop1 deficiency stimulated cell proliferation in a c-Jun-dependent manner. Focal deletions of COP1 were observed at significant frequency across several cancer types, and COP1 loss was determined to be one of the mechanisms leading to c-Jun upregulation in human cancer. We therefore conclude that Cop1 is a tumor suppressor that functions, at least in part, by antagonizing c-Jun oncogenic activity. In the absence of evidence for a genetic interaction between Cop1 and p53, our data strongly argue against the use of Cop1-inhibitory drugs for cancer therapy

    Compound A, a selective glucocorticoid receptor modulator, enhances heat shock protein Hsp70 gene promoter activation

    Get PDF
    Compound A possesses glucocorticoid receptor (GR)-dependent anti-inflammatory properties. Just like classical GR ligands, Compound A can repress NF-kappa B-mediated gene expression. However, the monomeric Compound A-activated GR is unable to trigger glucocorticoid response element-regulated gene expression. The heat shock response potently activates heat shock factor 1 (HSF1), upregulates Hsp70, a known GR chaperone, and also modulates various aspects of inflammation. We found that the selective GR modulator Compound A and heat shock trigger similar cellular effects in A549 lung epithelial cells. With regard to their anti-inflammatory mechanism, heat shock and Compound A are both able to reduce TNF-stimulated I kappa B alpha degradation and NF-kappa B p65 nuclear translocation. We established an interaction between Compound A-activated GR and Hsp70, but remarkably, although the presence of the Hsp70 chaperone as such appears pivotal for the Compound A-mediated inflammatory gene repression, subsequent novel Hsp70 protein synthesis is uncoupled from an observed CpdA-induced Hsp70 mRNA upregulation and hence obsolete in mediating CpdA's anti-inflammatory effect. The lack of a Compound A-induced increase in Hsp70 protein levels in A549 cells is not mediated by a rapid proteasomal degradation of Hsp70 or by a Compound A-induced general block on translation. Similar to heat shock, Compound A can upregulate transcription of Hsp70 genes in various cell lines and BALB/c mice. Interestingly, whereas Compound A-dependent Hsp70 promoter activation is GR-dependent but HSF1-independent, heat shock-induced Hsp70 expression alternatively occurs in a GR-independent and HSF1-dependent manner in A549 lung epithelial cells
    • …
    corecore