12,430 research outputs found
Mass modeling for bars
Methods of modeling mass for bars are surveyed. A method for extending John Archer's concept of consistent mass beyond just translational inertia effects is included. Recommendations are given for various types of modeling situations
Modeling a ball screw/ball nut in substructuring
In the particular NASTRAN application discussed here, a nut was attached to a stationary structure. The object of the analysis was to determine the vibration characteristics of the whole structure for various configurations; i.e., the evaluation of the mode shapes and frequencies when parts were moved to different mating positions. Details of the analysis are given
Modeling an electric motor in 1-D
Quite often the dynamicist will be faced with having an electric drive motor as a link in the elastic path of a structure such that the motor's characteristics must be taken into account to properly represent the dynamics of the primary structure. He does not want to model it so accurately that he could get detailed stress and displacements in the motor proper, but just sufficiently to represent its inertia loading and elastic behavior from its mounting bolts to its drive coupling. Described here is how the rotor and stator of such a motor can be adequately modeled as a colinear pair of beams
Modeling of connections between substructures
It is demonstrated here that complete checkout of a basic substructure can be done under the special circumstance of a sliding connection with offsets. Stiff bar connectors make this possible so long as the bar coordinates are aligned with the displacement coordinates at the sliding surface
Obtaining an equivalent beam
In modeling a complex structure the researcher was faced with a component that would have logical appeal if it were modeled as a beam. The structure was a mast of a robot controlled gantry crane. The structure up to this point already had a large number of degrees of freedom, so the idea of conserving grid points by modeling the mast as a beam was attractive. The researcher decided to make a separate problem of of the mast and model it in three dimensions with plates, then extract the equivalent beam properties by setting up the loading to simulate beam-like deformation and constraints. The results could then be used to represent the mast as a beam in the full model. A comparison was made of properties derived from models of different constraints versus manual calculations. The researcher shows that the three-dimensional model is ineffective in trying to conform to the requirements of an equivalent beam representation. If a full 3-D plate model were used in the complete representation of the crane structure, good results would be obtained. Since the attempt is to economize on the size of the model, a better way to achieve the same results is to use substructuring and condense the mast to equivalent end boundary and intermediate mass points
Monitoring of Ritz modal generation
A scheme is proposed to monitor the adequacy of a set of Ritz modes to represent a solution by comparing the quantity generated with certain properties involving the forcing function. In so doing an attempt was made to keep this algorithm lean and efficient, so that it will be economical to apply. Using this monitoring scheme during Ritz Mode generation will automatically ensure that the k Ritz modes theta k that are generated are adequate to represent both the spatial and temporal behavior of the structure when forced under the given transient condition defined by F(s,t)
Experiences running NASTRAN on the Microvax 2 computer
The MicroVAX operates NASTRAN so well that the only detectable difference in its operation compared to an 11/780 VAX is in the execution time. On the modest installation described here, the engineer has all of the tools he needs to do an excellent job of analysis. System configuration decisions, system sizing, preparation of the system disk, definition of user quotas, installation, monitoring of system errors, and operation policies are discussed
Generalized seismic analysis
There is a constant need to be able to solve for enforced motion of structures. Spacecraft need to be qualified for acceleration inputs. Truck cargoes need to be safeguarded from road mishaps. Office buildings need to withstand earthquake shocks. Marine machinery needs to be able to withstand hull shocks. All of these kinds of enforced motions are being grouped together under the heading of seismic inputs. Attempts have been made to cope with this problem over the years and they usually have ended up with some limiting or compromise conditions. The crudest approach was to limit the problem to acceleration occurring only at a base of a structure, constrained to be rigid. The analyst would assign arbitrarily outsized masses to base points. He would then calculate the magnitude of force to apply to the base mass (or masses) in order to produce the specified acceleration. He would of necessity have to sacrifice the determination of stresses in the vicinity of the base, because of the artificial nature of the input forces. The author followed the lead of John M. Biggs by using relative coordinates for a rigid base in a 1975 paper, and again in a 1981 paper . This method of relative coordinates was extended and made operational as DMAP ALTER packets to rigid formats 9, 10, 11, and 12 under contract N60921-82-C-0128. This method was presented at the twelfth NASTRAN Colloquium. Another analyst in the field developed a method that computed the forces from enforced motion then applied them as a forcing to the remaining unknowns after the knowns were partitioned off. The method was translated into DMAP ALTER's but was never made operational. All of this activity jelled into the current effort. Much thought was invested in working out ways to unshakle the analysis of enforced motions from the limitations that persisted
Ritz method for transient response in systems having unsymmetric stiffness
The DMAP coding was automated to such an extent by using the device of bubble vectors, that it is useable for analyses in its present form. This feasibility study demonstrates that the Ritz Method is so compelling as to warrant coding its modules in FORTRAN and organizing the resulting coding into a new Rigid Format. Even though this Ritz technique was developed for unsymmetric stiffness matrices, it offers advantages to problems with symmetric stiffnesses. If used for the symmetric case the solution would be simplified to one set of modes, because the adjoint would be the same as the primary. Its advantage in either type of symmetry over a classical eigenvalue modal expansion is that information density per Ritz mode is far richer than per eigenvalue mode; thus far fewer modes would be needed for the same accuracy and every mode would actively participate in the response. Considerable economy can be realized in adapting Ritz vectors for modal solutions. This new Ritz capability now makes NASTRAN even more powerful than before
A case of poor substructure diagnostics
The NASTRAN Manuals in the substructuring area are all geared toward instant success, but the solution paths are fraught with many traps for human error. Thus, the probability of suffering a fatal abort is high. In such circumstances, the necessity for diagnostics that are user friendly is paramount. This paper is written in the spirit of improving the diagnostics as well as the documentation in one area where the author felt he was backed into a blind corner as a result of his having committed a data oversight. This topic is aired by referring to an analysis of a particular structure. The structure, under discussion, used a number of local coordinate systems that simplified the preparation of input data. The principle features of this problem are introduced by reference to a series of figures
- …