6,493 research outputs found
Monitoring the CMS strip tracker readout system
The CMS Silicon Strip Tracker at the LHC comprises a sensitive area of approximately 200 m2 and 10 million readout channels. Its data acquisition system is based around a custom analogue front-end chip. Both the control and the readout of the front-end electronics are performed by off-detector VME boards in the counting room, which digitise the raw event data and perform zero-suppression and formatting. The data acquisition system uses the CMS online software framework to configure, control and monitor the hardware components and steer the data acquisition. The first data analysis is performed online within the official CMS reconstruction framework, which provides many services, such as distributed analysis, access to geometry and conditions data, and a Data Quality Monitoring tool based on the online physics reconstruction. The data acquisition monitoring of the Strip Tracker uses both the data acquisition and the reconstruction software frameworks in order to provide real-time feedback to shifters on the operational state of the detector, archiving for later analysis and possibly trigger automatic recovery actions in case of errors. Here we review the proposed architecture of the monitoring system and we describe its software components, which are already in place, the various monitoring streams available, and our experiences of operating and monitoring a large-scale system
Using XDAQ in Application Scenarios of the CMS Experiment
XDAQ is a generic data acquisition software environment that emerged from a
rich set of of use-cases encountered in the CMS experiment. They cover not the
deployment for multiple sub-detectors and the operation of different processing
and networking equipment as well as a distributed collaboration of users with
different needs. The use of the software in various application scenarios
demonstrated the viability of the approach. We discuss two applications, the
tracker local DAQ system for front-end commissioning and the muon chamber
validation system. The description is completed by a brief overview of XDAQ.Comment: Conference CHEP 2003 (Computing in High Energy and Nuclear Physics,
La Jolla, CA
The CMS Event Builder
The data acquisition system of the CMS experiment at the Large Hadron
Collider will employ an event builder which will combine data from about 500
data sources into full events at an aggregate throughput of 100 GByte/s.
Several architectures and switch technologies have been evaluated for the DAQ
Technical Design Report by measurements with test benches and by simulation.
This paper describes studies of an EVB test-bench based on 64 PCs acting as
data sources and data consumers and employing both Gigabit Ethernet and Myrinet
technologies as the interconnect. In the case of Ethernet, protocols based on
Layer-2 frames and on TCP/IP are evaluated. Results from ongoing studies,
including measurements on throughput and scaling are presented.
The architecture of the baseline CMS event builder will be outlined. The
event builder is organised into two stages with intelligent buffers in between.
The first stage contains 64 switches performing a first level of data
concentration by building super-fragments from fragments of 8 data sources. The
second stage combines the 64 super-fragments into full events. This
architecture allows installation of the second stage of the event builder in
steps, with the overall throughput scaling linearly with the number of switches
in the second stage. Possible implementations of the components of the event
builder are discussed and the expected performance of the full event builder is
outlined.Comment: Conference CHEP0
Beam Spot Position Measurement at the LEP Collider
A precise knowledge of the beam spot position is required for many physics topics at LEP2. The movement of the beam spot is studied at LEP1 using beam orbit monitors close to the interaction points and compared with measurements from tracks produced in e+e- collisions. The beam orbit monitors are found to follow the beam spot position well, particularly when corrected for movements of nearby quadrupole magnets. Data from the LEP high energy run of November 1995 are also analysed, and projections made for the prospects at LEP2
Emergent Electroweak Symmetry Breaking with Composite W, Z Bosons
We present a model of electroweak symmetry breaking in a warped extra
dimension where electroweak symmetry is broken at the UV (or Planck) scale. An
underlying conformal symmetry is broken at the IR (or TeV) scale generating
masses for the electroweak gauge bosons without invoking a Higgs mechanism. By
the AdS/CFT correspondence the W,Z bosons are identified as composite states of
a strongly-coupled gauge theory, suggesting that electroweak symmetry breaking
is an emergent phenomenon at the IR scale. The model satisfies electroweak
precision tests with reasonable fits to the S and T parameter. In particular
the T parameter is sufficiently suppressed since the model naturally admits a
custodial SU(2) symmetry. The composite nature of the W,Z-bosons provide a
novel possibility of unitarizing WW scattering via form factor suppression.
Constraints from LEP and the Tevatron as well as discovery opportunities at the
LHC are discussed for these composite electroweak gauge bosons.Comment: 39 pages, 4 figure
Measurement of Inclusive B --> psi Production
Using the combined CLEO II and CLEO II.V data sets of 9.1 fb^{-1} at the
Upsilon(4S), we measure properties of Psi mesons produced directly from decays
of the B meson, where ``B'' denotes an admixture of B+, B-, B0, and B0bar, and
``Psi'' denotes either J/Psi or Psi(2S). We report first measurements of Psi
polarization in B -> Psi(direct) X: alpha(J/Psi) = -0.30 {+0.07 -0.06 stat}
{+-0.04 syst} and alpha(Psi(2S)) = -0.45 {+0.22 -0.19 stat} {+-0.04 syst}. We
also report improved measurements of the momentum distributions of Psi produced
directly from B decays, correcting for measurement smearing. Finally, we report
measurements of the inclusive branching fraction for B -> Psi X and B -> Chi_c1
X.Comment: 8 pages postscript, also available through
http://w4.lns.cornell.edu/public/CLNS, submitted to PR
Measurement of the t(t)over-bar production cross section in the dilepton channel in pp collisions at âs=8 TeV
The top-antitop quark (t (t) over bar) production cross section is measured in proton-proton collisions at root s = 8 TeV with the CMS experiment at the LHC, using a data sample corresponding to an integrated luminosity of 5.3 fb(-1). The measurement is performed by analysing events with a pair of electrons or muons, or one electron and one muon, and at least two jets, one of which is identified as originating from hadronisation of a bottom quark. The measured cross section is 239 +/- 2 (stat.) +/- 11 (syst.) +/- 6 (lum.) pb, for an assumed top-quark mass of 172.5 GeV, in agreement with the prediction of the standard model
Measurement of the t t-bar production cross section in the dilepton channel in pp collisions at sqrt(s) = 7 TeV
The t t-bar production cross section (sigma[t t-bar]) is measured in
proton-proton collisions at sqrt(s) = 7 TeV in data collected by the CMS
experiment, corresponding to an integrated luminosity of 2.3 inverse
femtobarns. The measurement is performed in events with two leptons (electrons
or muons) in the final state, at least two jets identified as jets originating
from b quarks, and the presence of an imbalance in transverse momentum. The
measured value of sigma[t t-bar] for a top-quark mass of 172.5 GeV is 161.9 +/-
2.5 (stat.) +5.1/-5.0 (syst.) +/- 3.6(lumi.) pb, consistent with the prediction
of the standard model.Comment: Replaced with published version. Included journal reference and DO
Combined search for the quarks of a sequential fourth generation
Results are presented from a search for a fourth generation of quarks
produced singly or in pairs in a data set corresponding to an integrated
luminosity of 5 inverse femtobarns recorded by the CMS experiment at the LHC in
2011. A novel strategy has been developed for a combined search for quarks of
the up and down type in decay channels with at least one isolated muon or
electron. Limits on the mass of the fourth-generation quarks and the relevant
Cabibbo-Kobayashi-Maskawa matrix elements are derived in the context of a
simple extension of the standard model with a sequential fourth generation of
fermions. The existence of mass-degenerate fourth-generation quarks with masses
below 685 GeV is excluded at 95% confidence level for minimal off-diagonal
mixing between the third- and the fourth-generation quarks. With a mass
difference of 25 GeV between the quark masses, the obtained limit on the masses
of the fourth-generation quarks shifts by about +/- 20 GeV. These results
significantly reduce the allowed parameter space for a fourth generation of
fermions.Comment: Replaced with published version. Added journal reference and DO
Search for the standard model Higgs boson in the H to ZZ to 2l 2nu channel in pp collisions at sqrt(s) = 7 TeV
A search for the standard model Higgs boson in the H to ZZ to 2l 2nu decay
channel, where l = e or mu, in pp collisions at a center-of-mass energy of 7
TeV is presented. The data were collected at the LHC, with the CMS detector,
and correspond to an integrated luminosity of 4.6 inverse femtobarns. No
significant excess is observed above the background expectation, and upper
limits are set on the Higgs boson production cross section. The presence of the
standard model Higgs boson with a mass in the 270-440 GeV range is excluded at
95% confidence level.Comment: Submitted to JHE
- âŚ