858 research outputs found
Multiscale materials design of hard coatings for improved fracture resistance and thermal stability
Physical vapor deposited hard coatings comprised of cubic (c) transition metal (TM)-Al-N, and (TM)-Si-N are the current work horse materials for a large number of metal cutting and wear resistant applicatíons to light against the extreme conditions of temperature and stress simultaneously. In spite of a high degree of sophisticatíon in terms of material choice and microstructural design, a lower fracture resistance and limited thermal stability of the coatings remains a technological challenge in the field. The lower fracture resistance ofthe coating is an inherent material property. Limited thermal stability in the TM-Al-N system is associated with the transformation of metastable c -AIN to its stable wurtzite (w)-AIN phase ata temperature above 900 oC resulting an undesirable hardness drop. The current work shows how to overcome these challenges by manipulaling the coating material at different length scales, i.e. microstructure, crystal and interface structure, and alloy design. The endeavor of multiscale materials design is achieved by converging a deeper material and process knowledge to result specific structural modification over multiple length scales by alloying transition metal nitrides with AIN and SiNxs following. Microstructure variation is achieved in ZrN coating by alloying it with SiNx, where the surface segregated SiNx breaks down the columnar structure and evolves a self-organized nanocomposite structure with a hardness variation from 37 ±2 GPa to 26 ±1 GPa. The indentation induced fracture studies reveal crack deflection for the colum nar coating, likely a long the coiumn boundaries. The crack deflection olfers additional energy dissipative mechanisms that make the columnar structured coating more fracture resistant, which is not the case fur the nanocomposite coating in spite of its lower hardness. Crystal structure of AIN is variad between stable wurtzite structure to metastable cubic structure in the ZrAIN alloy by adapting a mullilayer structure and tuning the layerthickness. The multilayer consisting c-AIN layer shows a hardness of 34 ±1 GPa anda twofold enhancement in the critica! force to cause an indentation induced surface crack compared to the multilayer containing w-AIN in spite of a lower hardness for the later case. The higher fracture resistance is discovered to be ca u sed by stress- induced transformation of /IJN from its metastable cubic structure to its thermodynamically stable wurtzite structure associated with a molar volume expansion of20% that builds up local compressive stress zones delay;ng the onset and propagation of the cracks. This is in fact the first experím en tal data point for the stress-induced transfurmation toughening in a hard coatíng. The current work also demonstrates a concept of im proving the thermal stabilíty ofTM-Al-N by m odifying the interface structure between w-AIN and c-TMN. A popular belief in the field is that AIN in lis stable wurtzite structure is detrimental to coating hardness, and hence the curren! material design strategy Is to force AIN in metas table cubic phase that confines the application temperature (- 900 oC). In contrast, here it is shown that the w-AIN offers a high hardness provided if it is grown (semi-)coherent to c-TMN. This is experimentally shown for lhe multilayer system ofTiN/ZrAIN. The interface structure between the c-TiN, c-ZrN and w-AIN is transformed from incoherent to (semi-)coherent structure bytuning the growth conditions under a favorable crystallographic template. Furthennore, the low energy(semi-) coherent interface structure between w-AIN and c- TiN, c- ZrN display a high thermal stability, causing a high and more stable hardness up to an annealing temperature of 1150 oC with a value of34± 1.5 GPa. This value is 50 % higher comparad to the state-of-the-art monolithic and multilayered Ti-/IJ -N and Zr-Al-N coating containing incoherent w-AIN. Finally, an entropy based alloy design concept is explorad to form a thermodynamicLos recubrimientos duros formados por metales de transición (TM) cúbicos -AlN, y -SiN depositados mediante fase de vapor (CVD) son materiales extensamente utilizados en gran número de aplicaciones de corte y de desgaste bajo condiciones extremas de temperatura y solicitaciones mecánicas. A pesar de un alto grado de sofisticación en cuanto a la selección del material y el diseño microestructural, la baja resistencia a la fractura y la limitada estabilidad térmica sigue siendo un importante reto tecnológico. La variación microestructural en los recubrimientos de ZrN se controla mediante la aleación con SiNx, ya que la segregación superficial de SiNx rompe la estructura columnar y evoluciona a un nanocompuesto autoorganizado con una dureza de entre 37 ±2 GPa y 26 ±1 GPa. Las grietas producidas por indentación muestran la existencia de deflexión de grieta, lo que proporciona un mecanismo de disipación de energía adicional, haciendo de este material más resistente a la generación de grieta.La estructura cristalina del recubrimiento de AlN se varía entre la fase estable wurtzita y la fase cúbica estable ZrAlN mediante el control de la estructura y el espesor de la arquitectura multicapa. El recubrimiento multicapa formado por la fase c-AlN presenta una dureza de 34 ±1 GPa y una resistencia a la generación de grietas por indentación dos veces mayor comparado con el recubrimiento multicapa formado por w-AlN, aunque éste presente una dureza menor. La mayor resistencia a fractura está causada por la transformación inducida por tensión de AlN desde la fase cúbica metaestable a la fase wurtzita termodinámicamente estable acompañada de una expansión molar del 20%, resultando en una generación de tensiones compresivas que retarda la generación y propagación de grietas. Esta es la primera vez que se reporta la existencia de transformación catalizada por tensión en recubrimientos duros. En esta tesis también se demuestra el concepto de mejorar la estabilidad térmica de los recubrimientos basados en TM-Al-N mediante la modificación de la estructura interfacial entre las fases w-AlN y c-TMN. En general la existencia de AlN en su fase estable wurtzita puede ser detrimental para la dureza, y por lo tanto se suele depositar el material en la fase cúbica, lo que limita la temperatura de utilización (~ 900 oC). Esta dureza es un 50%mayor de la dureza reportada para recubrimientos monolíticos y multicapas de Ti-Al-N y Zr-Al-N que contengan fase incoherente de w-AlN. Finalmente, el concepto de aleaciones de alta entropía se utiliza para depositar una solución sólida termodinámicamente estable del sistema TM-Al-N que presenta una entalpía de mezcla positiva. Elementos de aleación multi-principales de (AlTiVCrNb)N se utilizan para formar una solución sólida cúbica . La alta entropía configuracional en la mezcla es mayor que la entalpía, por lo que se espera una formación de solución sólida estabilizada a temperaturas mayores de 1000K. Sin embargo, a temperaturas elevadas, la optimización entre la minimización de la energía de interacción y la maximización del desorden configuracional causa la precipitación de AlN en su estructura wurtzita estable, y la solución sólida cúbica está únicamente confinada entre TiN, CrN , VN y NbN que tienen baja entalpía de mezcla. En resumen, esta tesis presenta soluciones tecnológica a dos retos importantes en el campo. Se consigue una mejora significativa en la resistencia a fractura en los recubrimientos mediante la selección de materiales y el diseño microestructural mediante mecanismos de deflexión de grieta y transformación de fase asistida por tensión. Así mismo, se aumenta la estabilidad térmica de recubrimientos TM-Al-N mediante una nueva microestructura consistente en c-TMN y w-AlN termodinámicamente estable con una estructura interfacial (semi-)coherente de baja energía
Turismo acessível para todos, um paradigma emergente e um desafio para a oferta turística. O caso dos espaços museológicos e empreendimentos turísticos de Cascais.
Reflexão sobre o turismo acessível para todos, como modelo que se revela cada vez mais essencial para todo o sistema turístico, que se afirma não só pela sua relevância social, cívica e demográfica mas também pelas potencialidades económicas associadas. Todavia, o turismo acessível constitui um desafio de adaptação para a oferta turística instalada há vários anos, em destinos turísticos mais antigos, como é o caso de Cascais.Reflection on accessible tourism for all, as an increasingly essential model for the touristic system, that claims not only for its social, civic and demographic significance, but also for the economic potential associated. However, the accessible tourism is an adaptation challenge for the elderly tourism supply, at long-established tourism destinations, such as Cascais
Mitigating Coke Formations for Dry Reforming of Methane on Dual-Site Catalysts: A Microkinetic Modeling Study
Dry reforming of methane (DRM) utilizes carbon dioxide
(CO2) and methane (CH4) for syngas production.
However,
carbon accumulation leads to quick catalyst deactivation. In this
study, we developed microkinetic models to describe dual-site catalyst
systems to promote catalytic reactivity and suppress coke formation.
These dual-site systems serve as idealized bifunctional catalyst models
with well-defined active sites targeting different types of chemistries
in one reaction network. According to density functional theory (DFT)
calculations, the Co and Co–Mo2N interfacial sites
in the Co–Mo ternary nitride (i.e., Co3Mo3N) show distinct reactivities toward CH4 decomposition
and CHx oxidation, respectively. DFT calculations
suggested that DRM intermediates (e.g., OH, CHO) do not always follow
unified linear scaling relationships. Hence, a breakthrough was achieved
from the limitations of the intrinsic linear correlations embedded
in species adsorptions and activations. We employed microkinetic modeling
to quantify the enhancement in syngas productions related to bifunctionality.
Moreover, we confirmed that Co3Mo3N is the most
effective in mitigating coke formation by facilitating the oxidation
and transportation of carbonaceous species (e.g., C, CH) from the
initial active sites to sustain a high reactivity. This work has shed
light on rational catalyst designs to achieve high reactivity and
long-term stability, especially for reactions such as DRM
Substituent Effects on the pH Sensitivity of Acetals and Ketals and Their Correlation with Encapsulation Stability in Polymeric Nanogels
The effect of structural variations
in acetal- and ketal-based
linkers upon their degradation kinetics is studied through the design,
synthesis, and study of six series of molecules, comprising a total
of 18 different molecules. Through this systematic study, we show
that the structural fine-tuning of the linkers allows access to variations
in kinetics of degradation of more than 6 orders of magnitude. Hammett
correlations show that the ρ value for the hydrolysis of benzylidene
acetals is about −4.06, which is comparable to an S<sub>N</sub>1-like process. This shows that there is a strong, developing positive
charge at the benzylic position in the transition state during the
degradation of acetals. This positively charged transition state is
consistent with the relative degradation rates of acetals vs ketals
(correlated to stabilities of 1°, 2°, and 3° carboxonium
ion type intermediates) and the observed effect of proximal electron-withdrawing
groups upon the degradation rates. Following this, we studied whether
the degradation kinetics study correlates with pH-sensitive variations
in the host–guest characteristics of polymeric nanogels that
contains these acetal or ketal moieties as cross-linking functionalities.
Indeed, the trends observed in the small molecule degradation have
clear correlations with the encapsulation stability of guest molecules
within these polymeric nanogels. The implications of this fundamental
study extend to a broad range of applications, well beyond the polymeric
nanogel examples studied here
Importance of Evaluating Dynamic Encapsulation Stability of Amphiphilic Assemblies in Serum
In targeted drug
delivery systems, it is desirable that the delivery
of hydrophobic drugs to a cell or tissue is achieved with little to
no side effects. To ensure that the drugs do not leak during circulation,
encapsulation stability of the drug carrier in serum is critical.
In this paper, we report on a modified FRET-based method to evaluate
encapsulation stability of amphiphilic assemblies and cross-linked
polymer assemblies in serum. Our results show that serum components
can act as reservoirs for hydrophobic molecules. We also show that
serum albumin is likely to be the primary determinant of this property.
This work highlights the importance of assessing encapsulation stability
in terms of dynamics of guest molecules, as it provides the critical
distinction between hydrophobic molecules bound inside amphiphilic
assemblies and the molecules that are bound to the hydrophobic pockets
of serum albumin
Western blots.
Doxorubicin (DOX) is a broad-spectrum, highly effective antitumor agent; however, its cardiotoxicity has greatly limited its use. Hydrogen sulfide (H2S) is an endogenous gaseous transmitter that exerts cardioprotective effects via the regulation of oxidative stress and apoptosis and maintenance of mitochondrial function, among other mechanisms. AP39 is a novel mitochondria-targeted H2S donor that, at appropriate concentrations, attenuates intracellular oxidative stress damage, maintains mitochondrial function, and ameliorates cardiomyocyte injury. In this study, DOX-induced cardiotoxicity models were established using H9c2 cells and Sprague–Dawley rats to evaluate the protective effect of AP39 and its mechanisms of action. Both in vivo and in vitro experiments showed that DOX induces oxidative stress injury, apoptosis, and mitochondrial damage in cardiomyocytes and decreases the expression of p-AMPK/AMPK and UCP2. All DOX-induced changes were attenuated by AP39 treatment. Furthermore, the protective effect of AP39 was significantly attenuated by the inhibition of AMPK and UCP2. The results suggest that AP39 ameliorates DOX-induced cardiotoxicity by regulating the expression of AMPK/UCP2.</div
DOX induces mitochondrial damage in H9c2 cells.
(A) Western blot detection of apoptosis-related protein levels and statistical results (n = 3); (B) Representative JC-1 images and quantification of fluorescence intensity for JC-1 monomers/aggregates (n = 4); (C) ATP level (n = 4); (D) Representative images of mitochondria in H9c2 cells observed by transmission electron microscopy; (E) Western blot detection of p-AMPK, AMPK, and UCP2 levels and statistical results (n = 3). Values are presented as the mean ± SD. *p<0.05 vs. Con group, **p<0.01 vs. Con group.</p
Editing certificate.
Doxorubicin (DOX) is a broad-spectrum, highly effective antitumor agent; however, its cardiotoxicity has greatly limited its use. Hydrogen sulfide (H2S) is an endogenous gaseous transmitter that exerts cardioprotective effects via the regulation of oxidative stress and apoptosis and maintenance of mitochondrial function, among other mechanisms. AP39 is a novel mitochondria-targeted H2S donor that, at appropriate concentrations, attenuates intracellular oxidative stress damage, maintains mitochondrial function, and ameliorates cardiomyocyte injury. In this study, DOX-induced cardiotoxicity models were established using H9c2 cells and Sprague–Dawley rats to evaluate the protective effect of AP39 and its mechanisms of action. Both in vivo and in vitro experiments showed that DOX induces oxidative stress injury, apoptosis, and mitochondrial damage in cardiomyocytes and decreases the expression of p-AMPK/AMPK and UCP2. All DOX-induced changes were attenuated by AP39 treatment. Furthermore, the protective effect of AP39 was significantly attenuated by the inhibition of AMPK and UCP2. The results suggest that AP39 ameliorates DOX-induced cardiotoxicity by regulating the expression of AMPK/UCP2.</div
AP39 ameliorates DOX-induced myocardial injury.
(A)-(C) Cell viability determined by CCK-8 assays after H9c2 cells were treated with different concentrations of AP39 for 24 h,1 μmol/L DOX and different concentrations of AP39 for 24 h (n = 4); (D) H2S content in cells of each group (n = 4); (E) Representative DCFH-DA images and statistical results (n = 5); (F) SOD, GSH-Px, MDA, and NADPH levels in H9c2 cells (n = 4); (G) Apoptosis rate measured by flow cytometry (n = 3). (H) Representative TUNEL staining images and statistical results (n = 3). Values are presented as the mean±SD. *p<0.05 vs. Con group, **p<0.01 vs. Con group. #p<0.05 vs. DOX group, ##p<0.01 vs. DOX group.</p
- …