21 research outputs found
Using mutability landscapes of a promiscuous tautomerase to guide the engineering of enantioselective Michaelases
The Michael-type addition reaction is widely used in organic synthesis for carbon-carbon bond formation. However, biocatalytic methodologies for this type of reaction are scarce, which is related to the fact that enzymes naturally catalysing carbon-carbon bond-forming Michael-type additions are rare. A promising template to develop new biocatalysts for carbon-carbon bond formation is the enzyme 4-oxalocrotonate tautomerase, which exhibits promiscuous Michael-type addition activity. Here we present mutability landscapes for the expression, tautomerase and Michael-type addition activities, and enantioselectivity of 4-oxalocrotonate tautomerase. These maps of neutral, beneficial and detrimental amino acids for each residue position and enzyme property provide detailed insight into sequence-function relationships. This offers exciting opportunities for enzyme engineering, which is illustrated by the redesign of 4-oxalocrotonate tautomerase into two enantiocomplementary 'Michaelases'. These 'Michaelases' catalyse the asymmetric addition of acetaldehyde to various nitroolefins, providing access to both enantiomers of γ-nitroaldehydes, which are important precursors for pharmaceutically active γ-aminobutyric acid derivatives
Abdominal aortic aneurysm is associated with a variant in low-density lipoprotein receptor-related protein 1
Abdominal aortic aneurysm (AAA) is a common cause of morbidity and mortality and has a significant heritability. We carried out a genome-wide association discovery study of 1866 patients with AAA and 5435 controls and replication of promising signals (lead SNP with a p value < 1 × 10-5) in 2871 additional cases and 32,687 controls and performed further follow-up in 1491 AAA and 11,060 controls. In the discovery study, nine loci demonstrated association with AAA (p < 1 × 10-5). In the replication sample, the lead SNP at one of these loci, rs1466535, located within intron 1 of low-density-lipoprotein receptor-related protein 1 (LRP1) demonstrated significant association (p = 0.0042). We confirmed the association of rs1466535 and AAA in our follow-up study (p = 0.035). In a combined analysis (6228 AAA and 49182 controls), rs1466535 had a consistent effect size and direction in all sample sets (combined p = 4.52 × 10-10, odds ratio 1.15 [1.10-1.21]). No associations were seen for either rs1466535 or the 12q13.3 locus in independent association studies of coronary artery disease, blood pressure, diabetes, or hyperlipidaemia, suggesting that this locus is specific to AAA. Gene-expression studies demonstrated a trend toward increased LRP1 expression for the rs1466535 CC genotype in arterial tissues; there was a significant (p = 0.029) 1.19-fold (1.04-1.36) increase in LRP1 expression in CC homozygotes compared to TT homozygotes in aortic adventitia. Functional studies demonstrated that rs1466535 might alter a SREBP-1 binding site and influence enhancer activity at the locus. In conclusion, this study has identified a biologically plausible genetic variant associated specifically with AAA, and we suggest that this variant has a possible functional role in LRP1 expression
Kinetic Mechanism of Phenylacetone Monooxygenase from Thermobifida fusca
Phenylacetone monooxygenase (PAMO) from Thermobifida fusca is a FAD-containing Baeyer-Villiger monooxygenase (BVMO). To elucidate the mechanism of conversion of phenylacetone by PAMO, we have performed a detailed steady-state and pre-steady-state kinetic analysis. In the catalytic cycle (kcat = 3.1 s-1), rapid binding of NADPH (Kd = 0.7 µM) is followed by a transfer of the 4(R)-hydride from NADPH to the FAD cofactor (kred = 12 s-1). The reduced PAMO is rapidly oxygenated by molecular oxygen (kox = 870 mM-1 s-1), yielding a C4a-peroxyflavin. The peroxyflavin enzyme intermediate reacts with phenylacetone to form benzylacetate (k1 = 73 s-1). This latter kinetic event leads to an enzyme intermediate which we could not unequivocally assign and may represent a Criegee intermediate or a C4a-hydroxyflavin form. The relatively slow decay (4.1 s-1) of this intermediate yields fully reoxidized PAMO and limits the turnover rate. NADP+ release is relatively fast and represents the final step of the catalytic cycle. This study shows that kinetic behavior of PAMO is significantly different when compared with that of sequence-related monooxygenases, e.g., cyclohexanone monooxygenase and liver microsomal flavin-containing monooxygenase. Inspection of the crystal structure of PAMO has revealed that residue R337, which is conserved in other BVMOs, is positioned close to the flavin cofactor. The analyzed R337A and R337K mutant enzymes were still able to form and stabilize the C4a-peroxyflavin intermediate. The mutants were unable to convert either phenylacetone or benzyl methyl sulfide. This demonstrates that R337 is crucially involved in assisting PAMO-mediated Baeyer-Villiger and sulfoxidation reactions.
Characterization of a Newly Identified Mycobacterial Tautomerase with Promiscuous Dehalogenase and Hydratase Activities Reveals a Functional Link to a Recently Diverged cis-3-Chloroacrylic Acid Dehalogenase
The enzyme cis-3-chloroacrylic acid dehalogenase (cis-CaaD) is found in a bacterial pathway that degrades a synthetic nematocide, cis-1,3-dichloropropene, introduced in the 20th century. The previously determined crystal structure of cis-CaaD and its promiscuous phenylpyruvate tautomerase (PPT) activity link this dehalogenase to the tautomerase superfamily, a group of homologous proteins that are characterized by a catalytic amino-terminal proline and a beta-alpha-beta structural fold. The low-level PPT activity of cis-CaaD, which may be a vestige of the function of its progenitor, prompted us to search the databases for a homologue of cis-CaaD that was annotated as a putative tautomerase and test both its PPT and cis-CaaD activity. We identified a mycobacterial cis-CaaD homologue (designated MsCCH2) that shares key sequence and active site features with cis-CaaD. Kinetic and H-1 NMR spectroscopic studies show that MsCCH2 functions as an efficient PPT and exhibits low-level promiscuous dehalogenase activity, processing both cis- and trans-3-chloroacrylic acid. To further probe the active site of MsCCH2, the enzyme was incubated with 2-oxo-3-pentynoate (2-OP). At pH 8.5, MsCCH2 is inactivated by 2-OP due to the covalent modification of Pro-1, suggesting that Pro-1 functions as a nucleophile at pH 8.5 and attacks 2-OP in a Michael-type reaction. At pH 6.5, however, MsCCH2 exhibits hydratase activity and converts 2-013 to acetopyruvate, which implies that Pro-1 is cationic at pH 6.5 and not functioning as a nucleophile. At pH 7.5, the hydratase and inactivation reactions occur simultaneously. From these results, it can be inferred that Pro-1 of MsCCH2 has a pK(a) value that lies in between that of a typical tautomerase (pK(a) of Pro-I similar to 6) and that of cis-CaaD (pK(a) of Pro-I similar to 9). The shared activities and structural features, coupled with the intermediate pK(a) of Pro-1, suggest that MsCCH2 could be characteristic of an evolutionary intermediate along the past route for the divergence of cis-CaaD from an unknown superfamily tautomerase. This makes MsCCH2 an ideal candidate for laboratory evolution of its promiscuous dehalogenase activity, which could identify additional features necessary for a fully active cis-CaaD. Such results will provide insight into pathways that could lead to the rapid divergent evolution of an efficient cis-CaaD enzyme
Identification of 6-benzyloxysalicylates as a novel class of inhibitors of 15-lipoxygenase-1
Lipoxygenases metabolize polyunsaturated fatty acids into signalling molecules such as leukotrienes and lipoxins. 15-lipoxygenase-1 (15-LOX-1) is an important mammalian lipoxygenase and plays a crucial regulatory role in several respiratory diseases such as asthma, COPD and chronic bronchitis. Novel potent and selective inhibitors of 15-LOX-1 are required to explore the role of this enzyme in drug discovery. In this study we describe structure activity relationships for 6-benzyloxysalicylates as inhibitors of human 15-LOX-1. Kinetic analysis suggests competitive inhibition and the binding model of these compounds can be rationalized using molecular modelling studies. The most potent derivative 37a shows a Ki value of 1.7 μM. These structure activity relationships provide a basis to design improved inhibitors and to explore 15-LOX-1 as a drug target