232 research outputs found

    Open-system behaviour of magmatic fluid phase and transport of copper in arc magmas at Krakatau and Batur volcanoes, Indonesia

    Get PDF
    The Sunda arc of Indonesia is an excellent example of how volcanic processes at convergent plate margins affect the distribution of metals and control the distribution of ore deposits. In this paper, we report microtextural observations and microanalytical data (SEM-EDS and LA-ICP-MS) of silicate and sulfide melt inclusions from fresh samples of volcanic rocks from the 2008 eruption of Mt. Krakatau and 1963 eruption of Mt. Batur, Sunda arc, Indonesia that bear implications on the concentration and transport of Cu and other chalcophile elements in mafic-intermediate magmas in arc settings. These multi-phase inclusions contain glass, amphibole and plagioclase, together with co-trapped apatite, magnetite, sulfides and lobed, drop-like Fe-oxide. We observed two stages of sulfide formation: 1) early-formed sulfide globules (pyrrhotite and intermediate solid solution), which derived from an immiscible sulfide melt and only occur as inclusions in phenocrysts; and 2) late-formed, irregular Cu-rich sulfides (intermediate solid solution to bornite), which were deposited in the presence of an aqueous fluid, and are contained as fluid phase precipitates in vapour bubbles of melt inclusions and in vesicles, as well as finely dispersed grains in the groundmass. Microtextural observations and X-ray elemental maps show that interaction between sulfide globules and aqueous fluid resulted in partial oxidation and transfer of Cu between the fluid and the sulfide phase. A compilation of whole-rock analyses from the Sunda arc indicates that Cu reaches ~ 250–300 ppm in mafic samples (SiO2 ≤ 52 wt.%), and then suddenly drops with progressive fractionation to < 50 ppm in intermediate-felsic samples.This behaviour can be explained by sulfide melt exsolution or degassing and scavenging of Cu occurring at various stages of magma fractionation (at MgO ~ 8–2.5 wt.%). These trends can be effectively modelled by sulfide saturation during fractional crystallisation at oxygen fugacities varying from fO2 = FMQ + 0.8 to FMQ + 1.4. In contrast, LA-ICP-MS analyses of whole multi-phase melt inclusions hosted in olivine, pyroxene and plagioclase indicate variable Cu and S contents (Cu up to ~ 6000 ppm), which do not correlate with fractionation indicators (e.g. SiO2, MgO, Rb), consistent with co-trapping of Cu S phases with silicate melt. The highest Cu concentrations, Cu/S and incompatible trace elements (e.g. Rb) were measured in plagioclase, which crystallised over a wider range of melt compositions in comparison with olivine and pyroxene, and preferentially contains late-formed Cu-rich sulfides. These results underline the importance of mafic-intermediate magmas as sources of Cu in magmatic-hydrothermal ore deposits, and suggest that S-rich fluid is of primary importance in the transport of Cu in arc settings

    Magma chamber dynamics in a silicic LIP revealed by quartz: The Mesoproterozoic Gawler Range Volcanics

    Get PDF
    Silicic-dominated large igneous provinces (SLIP) represent vast amounts of magma (≥ 105 km3) erupted onto the Earth's surface or injected into the crust over short time spans, and are important components of the continental crust. The conditions of formation and evolution of these large magmatic provinces and their magma chambers are still poorly constrained. In this contribution, we examine cathodoluminescence textures and trace element (Al, Ti, Fe) zoning of quartz in a Mesoproterozoic SLIP, the Gawler Range Volcanics (GRV), South Australia. We describe intra-granular textures such as truncation of growth textures and reverse zoning (rimwards increase of Ti content). These characteristics of quartz, together with remelting of already crystallised portions of the magma chamber (felsic enclaves), suggest a complex history of crystallisation and resorption, and fluctuating magma temperature. Titanium-in-quartz geothermometry indicates that adjacent quartz zones record temperature variations (ΔT) up to 70 °C in volcanic units. We also report contrasting (non-correlatable) zoning patterns amongst quartz crystals, each indicating different crystallisation conditions. The juxtaposition of quartz crystals with contrasting zoning patterns is consistent with a dynamic regime (convection, stirring, overturning) of the GRV magma chamber. These results point to pulsating magmatic conditions, compatible with a non-linear evolution of the GRV magma chamber. Heat, necessary to explain both intra-granular and infra-granular textural variations, may have been provided in different pulses by underplating of mafic magma

    Evolution and emplacement of high fluorine rhyolites in the Mesoproterozoic Gawler silicic large igneous province, South Australia

    Get PDF
    The Gawler Range Volcanics (GRV) and the Hiltaba Suite (HS) of South Australia form a silicic-dominated large igneous province (the Gawler SLIP) emplaced in an intracontinental setting during the Mesoproterozoic. Emplacement of the GRV lasted for a short period of time (~2 Ma), and can be separated into two main phases. The first phase (lower GRV) is composed of thick (≤3 km) sequences erupted from distinct centres, and includes small to moderate volume (up to >150 km3) felsic lavas, ignimbrites, and minor mafic and intermediate lavas. The upper GRV include extensive felsic lavas that are up to >1000 of km3 in volume and >200 km across. Using well preserved, quartz-hosted melt inclusions, we investigated the composition of the lower GRV, including major, trace, and volatile elements. The results indicate high concentrations of K2O (≤7–8 wt.%), rare earth and high field strength elements, and low concentrations of Ca, Mg, Ni, Cr, Sr and Ba in comparison with felsic continental crust. Overall, melt inclusion compositions match whole-rock geochemical characteristics. We demonstrate that the GRV magma was F-rich (≤1.3 wt.%), and had high temperature for a silicic magma. High F concentrations and high temperature would have resulted in lower than usual polymerisation of the melt and relatively low viscosity. These characteristics help explain how very voluminous felsic magma was erupted effusively and emplaced as lavas. Other intracontinental SLIP contain extensive felsic lavas and ignimbrites which appear to share similar geochemical characteristics. We also show that selective alteration caused depletion of whole-rock compositions in some trace elements, namely Pb, U, and Sn

    Crystallisation of magmatic topaz and implications for Nb-Ta-W mineralisation in F-rich silicic melts - The Ary-Bulak ongonite massif

    Get PDF
    Textural, mineralogical and geochemical data on F-rich rhyolite (ongonite) from the Ary-Bulak massif of eastern Transbaikalia help constrain the formation of magmatic topaz. In these rocks, topaz occurs as phenocrysts, thus providing compelling evidence for crystallisation at the orthomagmatic stage. Cathodoluminescence images of topaz and quartz reveal growth textures with multiple truncation events in single grains, indicative of a dynamic system that shifted from saturated to undersaturated conditions with respect to topaz and quartz. Electron microprobe and Raman analyses of topaz indicate near-pure F composition [Al2SiO4F2], with very limited OH replacement. Laser ablation ICP-MS traverses revealed the presence of a large number of trace elements present at sub-ppm to hundreds of ppm levels. The chemical zoning of topaz records trace element fluctuations in the coexisting melt. Concentrations of some trace elements (Li, Ga, Nb, Ta and W) are correlated with cathodoluminescence intensity, thus suggesting that some of these elements act as CL activators in topaz.The study of melt inclusions indicates that melts with different F contents were trapped at different stages during formation of quartz and topaz phenocrysts, respectively. Electron microprobe analyses of glass in subhedral quartz-hosted melt inclusions indicate F ≤ 1.2 wt.%, whereas irregular-shaped melt inclusions hosted in both topaz and quartz have F ≤ 9 wt.%. Cryolithionite [Na3Li3Al2F12] coexists with glass in irregular inclusions, implying high Li contents in the melt. The very high F contents would have increased the solubility of Nb, Ta and W in the melt, thus allowing progressive concentration of these elements during magma evolution. Crystallisation of Nb–Ta–W-oxides (W-ixiolite and tantalite–columbite) may have been triggered by separation of cryolithionite, which would have caused F and Li depletion and consequent drop in the solubility of these elements

    The fluorine link between a supergiant ore deposit and a silicic large igneous province

    Get PDF
    Olympic Dam is a supergiant Fe oxide Cu-U-Au-Ag ore deposit (~9 × 109 t) that is also enriched in rare earth elements (REEs) and fluorine (F). The immediate host to the ore is hydrothermal breccia within granite and volcanic rocks of a Mesoproterozoic silicic large igneous province. Analyses of melt inclusions in quartz phenocrysts in rhyolite show that the silicic magmas of this province were unusually rich in F (up to 1.3 wt%). Fluorite and other F-rich minerals that crystallized from these magmas provided a gigantic reservoir of F. As a result, the Olympic Dam ore-forming fluid was F-rich and had exceptional capacity to transport diverse elements. Further, we infer that hydrofluoric acid, the most corrosive acid known, contributed to hydrothermal breccia formation by dissolution that in turn increased permeability and accelerated the rate of fluid-rock interaction. It is no accident that the world's largest hydrothermal ore deposit occurs in an F-rich silicic large igneous province

    In Vitro Resistance to Macrolides and Clindamycin by Group B Streptococcus Isolated from Pregnant and Nonpregnant Women

    Get PDF
    Background. Despite the introduction of screening bases intrapartum prophylaxis, Streptococcus agalactiae is still an important etiological agent of perinatal infections. The increasing rate of resistance and the differences in resistance pattern among countries suggest that a program of surveillance at the institutional level is important in determining optimal prophylaxis. In contrast, knowledge on GBS epidemiology in Italy is limited, and no data are available in the Southern region of the country. We sought to determine the occurrence of resistance to macrolides and clindamycin of GBS isolates in pregnant and nonpregnant women. Methods. Between 2005 and 2008, 1346 vaginal and 810 rectovaginal swabs were obtained from pregnant and not-pregnant women. Results. The occurrence of macrolides and clindamycin resistance was 16.5% in 2005 increasing up to 69.9% in 2008. A high percentage of isolates was resistant to tetracycline through all the study period with no statistically significant annual. Conclusions. In our cohort, an increase of in vitro resistance of GBS to macrolides and clindamycin is clearly evident. The discordance with reports from different countries emphasize the crucial role of microbiological methods in setting possible therapeutic strategies

    Neoproterozoic hydrothermal activity in the West Australian Craton related to Rodinia assembly or breakup?

    Get PDF
    The timing of final assembly and initiation of subsequent rifting of Rodinia is disputed. New rutile ages (913 ± 9 Ma, 900 ± 8 Ma and 873 ± 3 Ma) and published zircon, monazite, titanite, biotite, muscovite and xenotime geochronology from the Capricorn Orogen (West Australian Craton) reveal a significant early Neoproterozoic event characterized by very low to low metamorphic grade, abundant metasomatism, minor leucogranitic and pegmatitic magmatism and NW–SE fault reactivation episodes between ca. 955 and 830 Ma. Collectively, these are termed the ca. 955–830 Ma Kuparr Tectonic Event. An age range of ca. 955–830 Ma is concomitant with the final stages of Rodinia assembly and the initial stages of its attempted breakup. Very low- to low-grade metamorphic and structural geological evidence favor a distal north–south compressional regime as the driver for hydrothermal activity during ca. 955–830 Ma. Nearby continental collision or accretion from the west (e.g., South China and/or Tarim) are ruled out. The cessation of metasomatism and magmatism in the West Australian Craton after ca. 830 Ma is concomitant with the emplacement of the Gairdner–Amata dyke swarm and associated magmatic activity in South China and Laurentia, the inception of the Adelaide Rift Complex and the deposition of the Centralian Superbasin. We posit that the cessation of hydrothermal activity in the Capricorn Orogen was caused by a tectonic switch from compressional to extensional at ca. 830 Ma. Magmatic and hydrothermal fluids were transferred away from the Capricorn Orogen to the incipient Adelaide Rift Complex, terminating metasomatism in the West Australian Craton. Ultimately, the Kuparr Tectonic Event marked the final stages of Rodinia assembly and its cessation marks the initial stages of its attempted breakup

    Bi-Ag-Sulfosalts and Sulfoarsenides in the Ruwai Zn-Pb-Ag Skarn Deposit, Central Borneo, Indonesia

    Get PDF
    The Ruwai skarn deposit is located in the Schwaner Mountain complex within the central Borneo gold belt and is currently considered the largest Zn skarn deposit in Indonesia. The deposit has been known to host Zn-Pb-Ag mineralization in the form of massive sulfide ore bodies; however, the occurrence of Ag-bearing minerals has not been identified yet. This study documents the mineralogical characteristics of several Bi-Ag sulfosalts and sulfoarsenides, as well as their chemical compositions. Ten Bi-Ag sulfosalts were identified, including native bismuth, tetrahedrite, cossalite, tsumoite, bismuthinite, joseite-B, Bi6Te2S, Bi-Pb-Te-S, Bi-Ag-S, and Bi-Te-Ag. Three sulfoarsenides were identified, including arsenopyrite, glaucodot, and alloclasite. The occurrence of Bi-Ag sulfosalts is typically associated with massive sulfide mineralization, although tsumoite can also be found associated with massive magnetite. In terms of sulfoarsenides, both arsenopyrite and glaucodot are associated with massive sulfide mineralization, whereas alloclasite is associated with massive magnetite mineralization. The Bi-bearing minerals are characterized by irregular, bleb-like texture or patch morphology, and occur either as free grains or inclusions within sulfides, such as galena or pyrite. Tetrahedrite typically has an anhedral shape with a rim or atoll texture surrounding sphalerite or galena. In contrast, sulfoarsenides are typically found as euhedral-subhedral grains where glaucodot typically is rimmed by arsenopyrite. Both Bi-Ag sulfosalt and sulfoarsenides were formed during the retrograde stage under high oxidation and a low sulfidation state condition. The ore-forming temperature based on arsenopyrite geothermometry ranges from 428 degrees C to 493 degrees C
    corecore