94,049,968 research outputs found

    Magnetorheological landing gear: 2. Validation using experimental data

    Get PDF
    Aircraft landing gears are subjected to a wide range of excitation conditions with conflicting damping requirements. A novel solution to this problem is to implement semi-active damping using magnetorheological (MR) fluids. In part 1 of this contribution, a methodology was developed that enables the geometry of a flow mode MR valve to be optimized within the constraints of an existing passive landing gear. The device was designed to be optimal in terms of its impact performance, which was demonstrated using numerical simulations of the complete landing gear system. To perform the simulations, assumptions were made regarding some of the parameters used in the MR shock strut model. In particular, the MR fluid's yield stress, viscosity, and bulk modulus properties were not known accurately. Therefore, the present contribution aims to validate these parameters experimentally, via the manufacture and testing of an MR shock strut. The gas exponent, which is used to model the shock strut's nonlinear stiffness, is also investigated. In general, it is shown that MR fluid property data at high shear rates are required in order to accurately predict performance prior to device manufacture. Furthermore, the study illustrates how fluid compressibility can have a significant influence on the device time constant, and hence on potential control strategies

    Magnetic levitation on a type-I superconductor as a practical demonstration experiment for students

    Full text link
    We describe and discuss an experimental set-up which allows undergraduate and graduate students to view and study magnetic levitation on a type-I superconductor. The demonstration can be repeated many times using one readily available 25 liter liquid helium dewar. We study the equilibrium position of a magnet that levitates over a lead bowl immersed in a liquid hand-held helium cryostat. We combine the measurement of the position of the magnet with simple analytical calculations. This provides a vivid visualization of magnetic levitation from the balance between pure flux expulsion and gravitation. The experiment contrasts and illustrates the case of magnetic levitation with high temperature type-II superconductors using liquid nitrogen, where levitation results from partial flux expulsion and vortex physics

    Normal Mode Determination of Perovskite Crystal Structures with Octahedral Rotations: Theory and Applications

    Full text link
    Nuclear site analysis methods are used to enumerate the normal modes of ABX3ABX_{3} perovskite polymorphs with octahedral rotations. We provide the modes of the fourteen subgroups of the cubic aristotype describing the Glazer octahedral tilt patterns, which are obtained from rotations of the BX6BX_{6} octahedra with different sense and amplitude about high symmetry axes. We tabulate all normal modes of each tilt system and specify the contribution of each atomic species to the mode displacement pattern, elucidating the physical meaning of the symmetry unique modes. We have systematically generated 705 schematic atomic displacement patterns for the normal modes of all 15 (14 rotated + 1 unrotated) Glazer tilt systems. We show through some illustrative examples how to use these tables to identify the octahedral rotations, symmetric breathing, and first-order Jahn-Teller anti-symmetric breathing distortions of the BX6BX_{6} octahedra, and the associated Raman selection rules. We anticipate that these tables and schematics will be useful in understanding the lattice dynamics of bulk perovskites and would serve as reference point in elucidating the atomic origin of a wide range of physical properties in synthetic perovskite thin films and superlattices.Comment: 17 pages, 3 figures, 17 tables. Supporting information accessed through link specified within manuscrip

    Exploring the neutron dripline two neutrons at a time: The first observations of the 26O and 16Be ground state resonances

    Full text link
    The two-neutron unbound ground state resonances of 26^{26}O and 16^{16}Be were populated using one-proton knockout reactions from 27^{27}F and 17^{17}B beams. A coincidence measurement of 3-body system (fragment + n + n) allowed for the decay energy of the unbound nuclei to be reconstructed. A low energy resonance, << 200 keV, was observed for the first time in the 24^{24}O + n + n system and assigned to the ground state of 26^{26}O. The 16^{16}Be ground state resonance was observed at 1.35 MeV. The 3-body correlations of the 14^{14}Be + n + n system were compared to simulations of a phase-space, sequential, and dineutron decay. The strong correlations in the n-n system from the experimental data could only be reproduced by the dineutron decay simulation providing the first evidence for a dineutron-like decay.Comment: Invited Talk given at the 11th International Conference on Nucleus-Nucleus Collisions (NN2012), San Antonio, Texas, USA, May 27-June 1, 2012. To appear in the NN2012 Proceedings in Journal of Physics: Conference Series (JPCS

    Micro-plasticity and intermittent dislocation activity in a simplified micro structural model

    Full text link
    Here we present a model to study the micro-plastic regime of a stress-strain curve. In this model an explicit dislocation population represents the mobile dislocation content and an internal shear-stress field represents a mean-field description of the immobile dislocation content. The mobile dislocations are constrained to a simple dipolar mat geometry and modelled via a dislocation dynamics algorithm, whilst the shear-stress field is chosen to be a sinusoidal function of distance along the mat direction. The latter, defined by a periodic length and a shear-stress amplitude, represents a pre-existing micro-structure. These model parameters, along with the mobile dislocation density, are found to admit a diversity of micro-plastic behaviour involving intermittent plasticity in the form of a scale-free avalanche phenomenon, with an exponent for the strain burst magnitude distribution similar to those seen in experiment and more complex dislocation dynamics simulations.Comment: 30 pages, 12 figures, to appear in "Modelling and Simulation in Materials Science and Engineering

    General polarization modes for the Rosen gravitational wave

    Full text link
    Strong-field gravitational plane waves are often represented in either the Rosen or Brinkmann forms. While these two metric ansatze are related by a coordinate transformation, so that they should describe essentially the same physics, they rather puzzlingly seem to treat polarization states quite differently. Both ansatze deal equally well with + and X linear polarizations, but there is a qualitative difference in they way they deal with circular, elliptic, and more general polarization states. In this article we will develop a general formalism for dealing with arbitrary polarization states in the Rosen form of the gravitational wave metric, representing an arbitrary polarization by a trajectory in a suitably defined two dimensional hyperbolic plane.Comment: V1: 12 pages, no figures. V2: still 12 pages, reformatted. Minor technical edits, discussion of Riemann tensor added, two references added, no significant physics changes. This version accepted for publication in Classical and Quantum Gravit

    Time varying gravitational constant G via the entropic force

    Full text link
    If the uncertainty principle applies to the Verlinde entropic idea, it leads to a new term in the Newton's second law of mechanics in the Planck's scale. This curious velocity dependence term inspires a frictional feature of the gravity. In this short letter we address that this new term modifies the effective mass and the Newtonian constant as the time dependence quantities. Thus we must have a running on the value of the effective mass on the particle mass mm near the holographic screen and the GG. This result has a nigh relation with the Dirac hypothesis about the large numbers hypothesis (L.N.H.) [1]. We propose that the corrected entropic terms via Verlinde idea can be brought as a holographic evidence for the authenticity of the Dirac idea.Comment: Accepted for publication in "Communications in Theoretical Physics (CTP)",Major revisio

    Looking for symmetric Bell inequalities

    Full text link
    Finding all Bell inequalities for a given number of parties, measurement settings, and measurement outcomes is in general a computationally hard task. We show that all Bell inequalities which are symmetric under the exchange of parties can be found by examining a symmetrized polytope which is simpler than the full Bell polytope. As an illustration of our method, we generate 238885 new Bell inequalities and 1085 new Svetlichny inequalities. We find, in particular, facet inequalities for Bell experiments involving two parties and two measurement settings that are not of the Collins-Gisin-Linden-Massar-Popescu type.Comment: Joined the associated website as an ancillary file, 17 pages, 1 figure, 1 tabl

    How good are your fits? Unbinned multivariate goodness-of-fit tests in high energy physics

    Full text link
    Multivariate analyses play an important role in high energy physics. Such analyses often involve performing an unbinned maximum likelihood fit of a probability density function (p.d.f.) to the data. This paper explores a variety of unbinned methods for determining the goodness of fit of the p.d.f. to the data. The application and performance of each method is discussed in the context of a real-life high energy physics analysis (a Dalitz-plot analysis). Several of the methods presented in this paper can also be used for the non-parametric determination of whether two samples originate from the same parent p.d.f. This can be used, e.g., to determine the quality of a detector Monte Carlo simulation without the need for a parametric expression of the efficiency.Comment: 32 pages, 12 figure

    Constraining dark energy fluctuations with supernova correlations

    Full text link
    We investigate constraints on dark energy fluctuations using type Ia supernovae. If dark energy is not in the form of a cosmological constant, that is if the equation of state is not equal to -1, we expect not only temporal, but also spatial variations in the energy density. Such fluctuations would cause local variations in the universal expansion rate and directional dependences in the redshift-distance relation. We present a scheme for relating a power spectrum of dark energy fluctuations to an angular covariance function of standard candle magnitude fluctuations. The predictions for a phenomenological model of dark energy fluctuations are compared to observational data in the form of the measured angular covariance of Hubble diagram magnitude residuals for type Ia supernovae in the Union2 compilation. The observational result is consistent with zero dark energy fluctuations. However, due to the limitations in statistics, current data still allow for quite general dark energy fluctuations as long as they are in the linear regime.Comment: 18 pages, 6 figures, matches the published versio
    • ‚Ķ