317 research outputs found
S2: An Efficient Graph Based Active Learning Algorithm with Application to Nonparametric Classification
This paper investigates the problem of active learning for binary label
prediction on a graph. We introduce a simple and label-efficient algorithm
called S2 for this task. At each step, S2 selects the vertex to be labeled
based on the structure of the graph and all previously gathered labels.
Specifically, S2 queries for the label of the vertex that bisects the *shortest
shortest* path between any pair of oppositely labeled vertices. We present a
theoretical estimate of the number of queries S2 needs in terms of a novel
parametrization of the complexity of binary functions on graphs. We also
present experimental results demonstrating the performance of S2 on both real
and synthetic data. While other graph-based active learning algorithms have
shown promise in practice, our algorithm is the first with both good
performance and theoretical guarantees. Finally, we demonstrate the
implications of the S2 algorithm to the theory of nonparametric active
learning. In particular, we show that S2 achieves near minimax optimal excess
risk for an important class of nonparametric classification problems.Comment: A version of this paper appears in the Conference on Learning Theory
(COLT) 201
Data Poisoning Attacks in Contextual Bandits
We study offline data poisoning attacks in contextual bandits, a class of
reinforcement learning problems with important applications in online
recommendation and adaptive medical treatment, among others. We provide a
general attack framework based on convex optimization and show that by slightly
manipulating rewards in the data, an attacker can force the bandit algorithm to
pull a target arm for a target contextual vector. The target arm and target
contextual vector are both chosen by the attacker. That is, the attacker can
hijack the behavior of a contextual bandit. We also investigate the feasibility
and the side effects of such attacks, and identify future directions for
defense. Experiments on both synthetic and real-world data demonstrate the
efficiency of the attack algorithm.Comment: GameSec 201
- …